首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  国内免费   1篇
化学   13篇
数学   1篇
  2021年   3篇
  2015年   3篇
  2013年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
排序方式: 共有14条查询结果,搜索用时 40 毫秒
1.
Betulinic acid is one such natural pentacyclic triterpenoid compound, holding various pharmacological properties but its poor bioavailability is the only limitation. One of the biological macromolecules such as Lignin is a plant-derived aromatic, eco-friendly and low-cost polymer that certainly self-assembles into nano-sized colloids. Therefore, onto the current investigation, we increased the bioavailability of betulinic acid by coating on to a nanopolymer prepared with poly vinyl alcohol, lignins and methyl acrylate. Betulinic acid loaded polyvinyl alcohol/ethylacrylate grafted Lignin polymer (PVA/Lig-g-MA) nanoformulation was characterized using FTIR, XRD, SEM and TEM analysis and also the drug entrapment, in vitro drug releasing capacity was done to examine the efficiency of the nanoformulation of a drug. The MTT assay was evaluated the cytotoxicity of synthesized nanoformulation against normal endothelial cells HUVEC and HAPEC to confirm the side effects of the drug. The anti-atherosclerotic property of the nanoformulation was ascertained in both in vitro condition (with HUVEC and HPAEC) and in vivo studies (with Wistar rats). As a result, the characterization studies and in vitro studies clearly confirmed the Betulinic acid loaded PVA/Lig-g-MA nanoformulation is an ideal nanopolymer and it doesn’t cause any cytotoxic effect in normal endothelial cells. It also decreased the lipopolysaccharides induced inflammation through the down-regulation of NFκB and MAP/JNK signaling molecule expressions. Following in vivo results confirmed the synthesized nanoformulation effectively decreased the hyperchlostremia, inflammation and vasoconstriction, which induced over high fat diet. The results of histopathological analysis of cardiac tissues also confirmed the cardioprotective role of synthesized nanoformulation. Overall, both the in vitro and in vivo studies authentically proven the Betulinic acid loaded PVA/Lig-g-MA nanoformulation would be a potent cost effective anti-atherosclerotic nanodrug.  相似文献   
2.
何蕾  王宝辉  吕望  泮辉  胡坚 《应用数学》2015,37(13):1124-1128
目的 研究藤黄酸(GA)诱导人肺癌细胞H1975凋亡的分子机制,探讨氧自由基(ROS)和JNK信号通路在GA杀伤 肺癌细胞中的作用。方法 以人肺癌细胞H1975为研究对象,MTT法测定GA抑制细胞增殖的作用,Annexin V/PI 双染法测定细胞凋亡率,DCFH-DA 法测定ROS 含量,JC-1探针染色分析线粒体膜电位(MMP),Western blot检测JNK 信号通路的激活和线粒体凋亡途径相关蛋白表达的变化。结果 GA 呈剂量依赖性抑制H1975细胞的增殖,各实验组细胞存活率与空白对照组比较,均有统计学差异(P<0.05 或0.01)。1、2.5 和5滋mol/L GA 作用24h 后,细胞凋亡率分别为25.2%、51.8%和75.1%,剪切型凋亡相关蛋白cleaved caspase-9、cleaved caspase-3 和cleaved PARP 的表达随GA 浓度增高而显著增加,与空白对照组比较,均有统计学差异(P<0.05或0.01)。GA 作用2h 后H1975细胞ROS 含量显著升高,磷酸化JNK(p-JNK)表达上调(P<0.05或0.01)。GA 作用16h后各实验组细胞MMP 均明显降低(均P<0.05)。GA 作用24h后实验组细胞线粒体凋亡途径相关蛋白Bax、Bak、Bik表达增加,而抗凋亡蛋白Bcl-2表达与空白对照组相比明显下降(P<0.05 或0.01)。结论 GA 具有诱导H1975 细胞凋亡的作用,其可能机制是上调细胞内ROS含量,激活JNK 信号通路,进而引起MMP 降低和线粒体凋亡途径激活。  相似文献   
3.
As a way to develop a neuroprotective agent for the JNK3‐JIP1‐binding site, peptidomimetics of JIP‐1 as JNK3 allosteric regulators have been examined. The study consisted of in silico scaffold hopping, molecular docking, solution and solid‐phase peptide syntheses, and Kd measurements using surface plasmon resonance. As a peptidomimetic of JIP1, heptamer mimetic 16 (Kd=2.72 μm ) displayed a higher affinity than decamer JIP1 (Kd=23.6 μm ). The high affinity of 16 implies that the characteristic γ‐turn mimetic structure, “”Φ‐X‐Φ“ hydrophobic motif in 16 , increased its affinity toward the JIP‐site of JNK3.  相似文献   
4.
扇贝多肽经由aSMase-JNK通路抑制UVA诱导HaCaT细胞凋亡   总被引:1,自引:0,他引:1  
建立紫外线A(UVA)辐射损伤HaCaT细胞的病理模型, 从酸性鞘磷脂酶-JNK信号通路的角度研究扇贝多肽(Polypeptide from Chlamys farreri, PCF)抑制UVA诱导HaCaT细胞凋亡的分子机制. 采用Hoechst 33258染色结合琼脂糖凝胶电泳分析细胞凋亡; 用RT-PCR法和细胞免疫荧光染色检测胞内酸性鞘磷脂酶(acid sphingomyelinase, aSMase)的表达; 蛋白印迹法检测细胞内JNK及磷酸化JNK的蛋白水平. 结果表明, PCF可明显地抑制UVA诱导的HaCaT细胞凋亡; aSMase抑制剂Desipramine和JNK抑制剂SP600125均可阻断UVA引起的细胞凋亡; PCF的浓度在1.42~5.68 mmol/L范围内可依赖性地抑制UVA辐射后细胞内aSMase的表达量以及JNK蛋白的磷酸化; 预先加入Desipramine则抑制UVA引起的JNK蛋白的磷酸化. 表明PCF通过阻断aSMase-JNK通路来抑制UVA诱导HaCaT细胞凋亡.  相似文献   
5.
6.
Tropomyosin-related kinase A (TrkA) plays an important role in cell survival, differentiation, and apoptosis in various neuronal and nonneuronal cell types. Here we show that TrkA overexpression by the Tet-On system mimics NGF-mediated activation pathways in the absence of nerve growth factor (NGF) stimulation in U2OS cells. In addition, p53 upregulation upon DNA damage was inhibited by TrkA, and p21 was upregulated by TrkA in a p53-independent manner. TrkA overexpression caused cell death by interrupting cell cycle progression, and TrkA-induced cell death was diminished in the presence of its specific inhibitor GW441756. Interestingly, TrkA-mediated cell death was strongly related to gammaH2AX production and poly (ADP-ribose) polymerase cleavage in the absence of DNA damage inducer. In this study, we also reveal that gammaH2AX production by TrkA is blocked by TrkA kinase inhibitors K-252a and GW441756, and it is also significantly inhibited by JNK inhibitor SP600125. Moreover, reduction of cell viability by TrkA was strongly suppressed by SP600125 treatment, suggesting a critical role of JNK in TrkA-induced cell death. We also found that gammaH2AX and TrkA were colocalized in cytosol in the absence of DNA damage, and the nuclear localization of gammaH2AX induced by DNA damage was partly altered to cytosol by TrkA overexpression. Our results suggest that the abnormal cytosolic accumulation of gammaH2AX is implicated in TrkA-induced cell death in the absence of DNA damage.  相似文献   
7.
The recent discovery of c‐Jun NH2‐terminal kinase JNK1 suppression by natural quercetagetin ( 1 ) is a promising lead for the development of novel anticancer agents. Using both X‐ray structure and docking analyses we predicted that 5′‐hydroxy‐ ( 2 ) and 5′‐hydroxymethyl‐quercetagetin ( 3 ) would inhibit JNK1 more actively than the parent compound 1 . Notably, our drug design was based on the active enzyme–ligand complex as opposed to the enzyme’s relatively open apo structure. In this paper we test our theoretical predictions, aided by docking‐model experiments, and report the first synthesis and biological evaluation of quercetagetin analogues 2 and 3 . As calculated, both compounds strongly suppress JNK1 activity. The IC50 values were determined to be 3.4 μM and 12.2 μM , respectively, which shows that 2 surpasses the potency of the parent compound 1 (IC50=4.6 μM ). Compound 2 was also shown to suppress matrix metalloproteinase‐1 expression with high specificity after UV irradiation.  相似文献   
8.
Microwave irradiation of a hydrazine and 3-methoxyacrylonitrile, ethoxymethylenemalononitrile or ethyl acetoacetate provides rapid access to 3- or 5-substituted pyrazoles in excellent yield and with total regiocontrol in a process that can be switched from one regioisomer to the other by choice of conditions. Subsequent reaction, either by microwave-assisted hydrolysis and cyclocondensation with formamide, Hantzsch-type three-component reaction with an aldehyde and ketone, or by cyclocondensation with 2-nitrobenzaldehyde, provides the pyrazolo[3,4-d]pyrimidine, pyrazolo[3,4-b]pyridine or pyrazolo[3,4-b]quinolin-4-one framework, respectively, of inhibitors of mitogen-activated protein kinases.  相似文献   
9.
Previous studies have demonstrated that sulforaphane (SFN) is a promising agent against osteoclastic bone destruction. However, the mechanism underlying its anti-osteoclastogenic activity is still unclear. Herein, for the first time, we explored the potential role of autophagy in SFN-mediated anti-osteoclastogenesis in vitro and in vivo. We established an osteoclastogenesis model using receptor activator of nuclear factor kappa-β ligand (RANKL)-induced RAW264.7 cells and bone marrow macrophages (BMMs). Tartrate-resistant acid phosphatase (TRAP) staining showed the formation of osteoclasts. We observed autophagosomes by transmission electron microscopy (TEM). In vitro, we found that SFN inhibited osteoclastogenesis (number of osteoclasts: 22.67 ± 0.88 in the SFN (0) group vs. 20.33 ± 1.45 in the SFN (1 μM) group vs. 13.00 ± 1.00 in the SFN (2.5 μM) group vs. 6.66 ± 1.20 in the SFN (2.5 μM) group), decreased the number of autophagosomes, and suppressed the accumulation of several autophagic proteins in osteoclast precursors. The activation of autophagy by rapamycin (RAP) almost reversed the SFN-elicited anti-osteoclastogenesis (number of osteoclasts: 22.67 ± 0.88 in the control group vs. 13.00 ± 1.00 in the SFN group vs. 17.33 ± 0.33 in the SFN+RAP group). Furthermore, Western blot (WB) analysis revealed that SFN inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). The JNK activator anisomycin significantly promoted autophagy, whereas the inhibitor SP600125 markedly suppressed autophagic activation in pre-osteoclasts. Microcomputed tomography (CT), immunohistochemistry (IHC), and immunofluorescence (IF) were used to analyze the results in vivo. Consistent with the in vitro results, we found that the administration of SFN could decrease the number of osteoclasts and the expression of autophagic light chain 3 (LC3) and protect against lipopolysaccharide (LPS)-induced calvarial erosion. Our findings highlight autophagy as a crucial mechanism of SFN-mediated anti-osteoclastogenesis and show that the JNK signaling pathway participates in this process.  相似文献   
10.
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3β-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号