首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 27 毫秒
1
1.
Arteriovenous malformations (AVM) of the brain, errors in the development of the vasculature, produce high flow arteriovenous shunts. They steal blood from surrounding brain tissue, which is chronically hypoperfused. Hypoperfusion is a condition of inadequate tissue perfusion and oxygenation resulting in abnormal tissue metabolism. In the present study Fourier transform infrared (FTIR) spectroscopy was used to investigate the effects of hypoperfusion on rat cranial bone mineral and organic matrix at the molecular level. FTIR spectroscopic analysis revealed that in cranial bones of an experimental group the relative amount of carbonate and phosphate groups increased whereas that of protein (amide I) decreased. Curve-fitting analysis of the v2 carbonate band showed that amounts of type A and type B carbonates increased slightly (p=0.423 for both) whereas, type L carbonate decreased slightly (p=0.522) in hypoperfused cranial bones. Analysis of the C–H region revealed a significant increase (p=0.037) in the lipid to protein ratio. Because the lipid content is high, hypoperfused cranial bone tissue is more prone to lipid peroxidation. Dialdehydes derived from lipid peroxidation can make cross-links with collagen and might lead to disturbances in the collagen cross-link profile. The 1660 cm–1/1690 cm–1 partial area ratio derived from curve-fitting analysis of the Amide I band is sensitive to the relative amount of collagen non-reducible cross-link hydroxylysyl/lysylpyridinolines (Pyr) and reducible cross-link dihydroxylysinonorleucine (DHLNL) and this ratio reflects collagen maturity. In chronic hypoperfusion a significant decrease (p=0.004) was observed in this ratio. This means there were less mature collagen cross-links. Disturbances in the collagen maturation can affect mineralization process and lead to formation of pathologic structures in cranial bones. These findings clearly demonstrate that FTIR spectroscopy can be used to extract valuable information at molecular level, leading to better understanding of the effect of hypoperfusion on rat cranial bones.  相似文献   
2.
Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5 hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号