首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   3篇
  国内免费   37篇
化学   187篇
晶体学   10篇
力学   3篇
物理学   91篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   7篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   36篇
  2010年   25篇
  2009年   37篇
  2008年   17篇
  2007年   23篇
  2006年   12篇
  2005年   16篇
  2004年   12篇
  2003年   3篇
  2002年   4篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有291条查询结果,搜索用时 171 毫秒
1.
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005–982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM−1 cm−2 with excellent precision and accuracy towards the sensing of nitrofurantoin.  相似文献   
2.
This study reports the adsorption efficacy of hydroxyapatite (HAp) for removing Congo Red (CR) dye from aqueous solution. HAp was synthesized utilizing chicken eggshell as a precursor of Ca source. Solid state synthesis method was implemented which comprised calcination at 950 °C (E-HAp950). XRD analysis confirmed the formation of bi-phasic HAp with 15.5% of β-TCP. Elemental composition was evaluated by XPS and EDX analysis. FESEM analysis revealed the particles are of plate and spherical shaped also confirmed by the TEM images. DLS particle size, zeta potential, BET surface area and point of zero charge were also evaluated. Adsorption efficacy of E-HAp950 for removing CR was evaluated by batch adsorption experiment. Maximum adsorption capacity (qmax) was found to be 9.64 mgg−1 which was best explained by the non-linear fitting (R2 = 0.98) of Langmuir isotherm. Adsorption kinetics profusely followed pseudo second order kinetic model (R2 = 0.999) with qe (experimental) being very much closer to qe (calculative) for this model. Thus, hydroxyapatite prepared by utilizing eggshell waste through solid state method has the potential to remove toxic dyes.  相似文献   
3.
《印度化学会志》2021,98(11):100191
Hydroxyapatite is a versatile compound resembling natural bone mineral. HAP insinuates feasibility with substitution ensuing in its application in various fields. The properties of calcium and strontium are cognate and pose as a bone-seeking trace-element that accumulates in new trabecular bone. Strontium substituted hydroxyapatite, Ca9.5Sr0.5(OH)2(PO4)6, was synthesized using citric acid as fuel and calcined 900 ​°C. The as-prepared product notably was characterized by powder X-ray diffraction, Fourier - Transform Infrared spectroscopy and Scanning Electron Microscope along with Energy Dispersive Spectroscopy. FT-IR analysis exhibited stretching and bending vibrations of (PO4)3- and OH groups along without any signal of carbonate group. Studies showed that product formed is strontium substituted hydroxyapatite, and calcination temperature plays an essential role in the formation of hydroxyapatite phase. The precursors when calcined resulted in 46–50 ​nm of Sr substituted hydroxyapatite.  相似文献   
4.
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5–93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.  相似文献   
5.
Nano sized hydroxyapatites with silicon substitution of three different silicon concentrations were successfully prepared first time by a rapid microwave assisted synthesis method, with a time saving and energy efficient technique. The effects of the Si substitution on crystallite size, particle size and morphology of the powders were investigated. The crystalline phase, microstructure, chemical composition, and morphology and particle size of hydroxyapatite and silicon substituted hydroxyapatites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and dynamic light scattering. The crystallite size and particle size decreases with increase in silicon content and particle morphology spheroidal for pure hydroxyapatite changes to elongated ellipsoidal crystals while silicon substitution increases. Fourier Transform Infrared Spectroscopy analysis reveals, the silicon incorporation to hydroxyapatite lattice occurs via substitution of silicate groups for phosphate groups. Substitution of phosphate group by silicate in the apatite structure results in a small increase in the lattice parameters in both a-axis and c-axis of the unit cell.  相似文献   
6.
Renal cell carcinoma is the most common cancer of the kidney, and resistant to traditional therapies. The aim of this study is to investigate the effects of hydroxyapatite nanoparticles on human renal cell carcinoma 786-0 cells. Cell proliferation was assessed with an 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide(MTT) staining kit. The apoptosis assay was assessed with an FITC Annexin V Apoptosis Detection Kit. Caspase-3 and caspase-12 were detected by immunocytochemical staining and semi-qua...  相似文献   
7.
The present study reports the results of structural and mechanical analysis, as well as proteins release kinetics and osteointegration in mice craniotomy model of highly porous PEEK (PolyEther Ether Ketone) and PEEK/HA (PolyEther Ether Ketone/HydroxyApatite) biomimetic scaffolds loaded with Escherichia coli-derived recombinant Bone Morphogenetic Protein-2 (BMP-2) and ErythroPOietin (EPO). Porous scaffolds were obtained by thermopressing with NaCl as a pore-forming filler. Two fractions of pore-forming filler were used to imitate natural trabecular bone tissue by making a preferential porosity using large fraction and creating an extended surface and special microrelief using small fraction. Hydroxyapatite (HA) was added up to 20% to activate bioinert PEEK providing loading of recombinant growth factors and osteointegration as well as sufficient level of mechanical properties imitating human trabecular bone. Unexpectedly, the non-activated PEEK produced by our technology was also able to spontaneously bind both BMP-2 and EPO. Loading of both BMP-2 and EPO to both types of implants resulted in enhanced neoosteogenesis and angiogenesis in a critical-size cranial defect model in mice in 3–6 weeks. Considering good mechanical characteristics and excellent osteoinductive and angiogenic properties, both materials in combination with BMP-2 and EPO can find their application in regenerative medicine.  相似文献   
8.
Artificially fabricated hydroxyapatite (HAP) shows excellent biocompatibility with various kinds of cells and tissues which makes it an ideal candidate for a bone substitute material. In this study, hydroxyapatite nanoparticles have been prepared by using the wet chemical precipitation method using calcium nitrate tetra-hydrate [Ca(NO3)2.4H2O] and di-ammonium hydrogen phosphate [(NH4)2 HPO4] as precursors. The composite scaffolds have been prepared by a freeze-drying method with hydroxyapatite, chitosan, and gelatin which form a 3D network of interconnected pores. Glutaraldehyde solution has been used in the scaffolds to crosslink the amino groups (|NH2) of gelatin with the aldehyde groups (|CHO) of chitosan. The X-ray diffraction (XRD) performed on different scaffolds indicates that the incorporation of a certain amount of hydroxyapatite has no influence on the chitosan/gelatin network and at the same time, the organic matrix does not affect the crystallinity of hydroxyapatite. Transmission electron microscope (TEM) images show the needle-like crystal structure of hydroxyapatite nanoparticle. Scanning Electron Microscope (SEM) analysis shows an interconnected porous network in the scaffold where HAP nanoparticles are found to be dispersed in the biopolymer matrix. Fourier transforms infrared spectroscopy (FTIR) confirms the presence of hydroxyl group (OH-) , phosphate group (PO3-4) , carbonate group (CO2-3) , imine group (C=N), etc. TGA reveals the thermal stability of the scaffolds. The cytotoxicity of the scaffolds is examined qualitatively by VERO (animal cell) cell and quantitatively by MTTassay. The MTT-assay suggests keeping the weight percentage of glutaraldehyde solution lower than 0.2%. The result found from this study demonstrated that a proper bone replacing scaffold can be made up by controlling the amount of hydroxyapatite, gelatin, and chitosan which will be biocompatible, biodegradable, and biofriendly for any living organism.  相似文献   
9.
A novel biological approach is attempted to convert the human urinary waste into a well-designed bionanomaterial. In the present study, biological activated ammonia gas (NH3(g)) mediated synthesis of hydroxyapatite material (B-HAp) and then impregnation of silver nanoparticles (AgNPs) on the B-HAp material surface was performed by photoreduction method and was followed by an evaluation of its antibacterial activity and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. X-ray diffraction spectroscopy (XRD) and Field emission-scanning electron microscopy (FE-SEM) were engaged to analyze the synthesized materials. Analytical studies revealed the morphology of the crystalline B-HAp synthesized by biologically activated NH3(g) as spherical shaped with AgNPs impregnated on over it. Atomic Absorption Spectrometers (AAS) estimated 2–7 ppm of Ag+ ion were released from the 100 ppm of Ag concentration was impregnated with B-HAp material (B-HAp-Ag-10). It was also found to be an excellent performance of antibacterial activity against Pseudomonas sp, E.coli and S. aureus. The cell- material interaction study of the thus synthesised B-HAp-Ag-10 was found to exhibit a minimal cytotoxicity level when incorporated in MG63 osteosarcoma cell lines, thus confirming the prospective biological application of our material in the biomedical field.  相似文献   
10.
《Arabian Journal of Chemistry》2020,13(12):8626-8637
Hydroxyapatite (HAP) containing different contents of palladium (Pd) ions were synthesized using the co-precipitation method. The structural and morphological properties of the as-synthesized compositions were investigated using XRD and FESEM. The c/a increased from 0.728 to 0.733 with the lowest and highest contributions of Pd(II), respectively. Furthermore, the morphological features were investigated using FESEM. It was illustrated that Pd-HAP was formed as agglomerated as rod shapes with dimensions in the range of 63.4–110.3 nm for no Pd additions, and the size was reduced reaching 43.4–70.5 nm for the highest Pd contribution. Besides, the maximum height of the roughness (Rt) grew from 183.6 up to 236.5 nm for the lowest and highest Pd(II). Besides, the obtained specific surface area was around 28.3, 42.0, and 63.4 m2/g for 0.0Pd-HAP, 0.6Pd-HAP, and 1.0Pd-HAP, respectively. The antibacterial activity was examined against both Escherichia coli (E-coli) and Staphylococcus aureus (S. aureus), and it obvious that the activity was enhanced upon Pd content. The inhibition zone was increased from no sensitivity reaching 4.3 ± 0.9 and 4.5 ± 0.8 mm for no Pd and the highest one, respectively. The removal efficiency of dyes was examined for methylene blue (MB) and it was shown that after 120 min of irradiation, the removal efficiency reached around 86.4% for the highest contribution of Pd. The pseudo-first-order constant (Kapp) increased from 0.0032 to 0.0179 min−1. The recyclability of Pd-HAP denoted that removal efficiency decreased to 5.65, 8.14, 6.24, 8.76, and 10.2% for different contents of Pd(II) after 6 cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号