首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   11篇
  国内免费   92篇
化学   647篇
晶体学   134篇
力学   40篇
数学   10篇
物理学   424篇
  2023年   11篇
  2022年   8篇
  2021年   8篇
  2020年   21篇
  2019年   17篇
  2018年   6篇
  2017年   34篇
  2016年   33篇
  2015年   14篇
  2014年   25篇
  2013年   94篇
  2012年   35篇
  2011年   166篇
  2010年   42篇
  2009年   80篇
  2008年   62篇
  2007年   76篇
  2006年   63篇
  2005年   47篇
  2004年   37篇
  2003年   29篇
  2002年   49篇
  2001年   31篇
  2000年   26篇
  1999年   22篇
  1998年   16篇
  1997年   17篇
  1996年   23篇
  1995年   15篇
  1994年   14篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   13篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   17篇
  1984年   12篇
  1983年   2篇
  1982年   19篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1255条查询结果,搜索用时 15 毫秒
1.
Abstract

In the enthalpy relaxation of poly(vinyl chloride), a decrease in enthalpy upon the isothermal ageing was measured using the differential scanning calorimetry method as a function of ageing time (tA) and ageing temperature. The range of the ageing temperature was from 56?°C (Tg ? 25?°C) to 72?°C (Tg ? 9?°C) where Tg denotes the glass transition temperature. The limiting value of the decrease in enthalpy was determined by applying a stretched exponential function to the measured enthalpy data. The relaxation function (?) was derived from the measured enthalpy and the construction of a master curve was tried by shifting the ? ? tA curves of the respective ageing temperatures horizontally. Although there was no agreement between the shift factors (aT) and the relaxation times of the ? ? tA curves, the superposition was successfully constructed and the aT values obtained for the poly(vinyl chloride) sample were found to be comparable to those reported for viscoelastic experiments over a broad temperature range above and below Tg carried out for different polymers. The origin of the decrease in enthalpy was briefly discussed in terms of the chain dynamics in the isothermal condition.  相似文献   
2.
The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management.  相似文献   
3.
Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.  相似文献   
4.
On the basis of the mineral banalsit (BaNa2Al4Si4O16) and the addition of small B2O3 concentrations, transparent glasses were prepared. Furthermore, in order to achieve nucleation, LiF and CaF2 were added. Hexacelsian was formed in bulk crystallized glass samples whereas, monocelsian, as well as small quantities of nepheline and banalsite were crystallized from sintered glass powder. The scanning electron micrographs of the sintered samples show high crystallinity and crystals with sizes from nano to micrometers. The SEM micrographs and the EDX microanalyses show that nano size rods of monocelsian surrounded by micrometer-sized hexagonal nepheline, banalsite or residual glassy phase occur. The coefficient of thermal expansion of the samples sintered at 1000 °C was higher (12.93–9.52 × 10−6 K−1) in hexacelsian containing samples than in monocelsian (2.24–7.35 × 10−6 K−1) containing ones. The samples also showed notably different densities of 2.6424 and 2.4718 g/cm3, respectively.  相似文献   
5.
A simple and fast "non-hole" bacteria surface imprinted (SPBIP) impedance sensor was constructed for ultrasensitive detection of Salmonella. The SPBIP sensor was prepared by one step electropolymerization of pyrrole (functional monomer), single-walled carbon nanotube (SWNT, nano-modulator), and Salmonella(template) onto a glassy carbon electrode. After removing the bacterial template, "non-hole" imprinted sites were formed on the surface of the polymer matrix, allowing the target bacteria to be specifically recognized. The resulting changes in the electrode surface impedance could be used to detect the target bacteria. The effects of the amount of SWNT, polymerization cycles, eluents, elution time and recognition time on the recognition ability of the sensor were investigated. Under the optimal conditions, the sensor could be used to detect 10~1×107 CFU/mLSalmonella with the limit of detection of 3.5 CFU/mL. The sensor could be used for the detection of salmonella in drinking water and orange juice samples with the recoveries ranging from 95.4% to 109.5%. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   
6.
Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes,herein,a fully abiotic,single glass conical nanopores energy-harvesting is demonstrated.Ion current rectification(ICR)in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion.The degree of ICR is enhanced with the increasing forward concentration difference.An unusual rectification inversion is observed when the concentration gradient is reversely applied.The maximum power output with the individual nanopore approaches10~4pW.This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.  相似文献   
7.
Flow-induced fiber orientation and concentration distributions were measured in a concentrated fiber suspension (CFS) and a dilute one (DFS). The channel has a thin slit geometry containing a circular cylinder. In the previous work, many researchers have qualitatively studied fiber orientation and concentration distributions in injection-molded products of fiber-reinforced plastics. In the present work, however, they are quantitatively estimated by direct observation of fibers in the concentrated suspension flow. For the CFS, some fibers rotate in an expansion part between the channel wall and the circular cylinder, and the fiber orientation becomes almost random state. On the other hand, fibers are perfectly aligned along the flow direction owing to the elongational flow near the centerline downstream of the cylinder. The fiber concentration has a flat distribution except near the channel wall and the centerline. For the DFS a minimum in the fiber concentration distribution was clearly observed on the centerline, and two peaks beside the centerline and near the channel wall. This characteristic distribution is caused by the fiber-wall and fiber-cylinder interactions. It is found that the obstacle such as the circular cylinder in the channel significantly affects the fiber orientation downstream of the obstacle for the CFD, while it affects the fiber concentration distribution for the DFS.  相似文献   
8.
A three-dimensional, finite-deformation-based constitutive model to describe the behavior of metallic glasses in the supercooled liquid region has been developed. By formulating the theory using the principles of thermodynamics and the concept of micro-force balance [Gurtin, M., 2000. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989-1036], a kinetic equation for the free volume concentration is derived by augmenting the Helmholtz free energy used for a conventional metallic alloy with a flow-defect free energy which depends on the free volume concentration and its spatial gradient. The developed constitutive model has also been implemented in the commercially available finite-element program ABAQUS/Explicit (2005) by writing a user-material subroutine. The constitutive parameters/functions in the model were calibrated by fitting the constitutive model to the experimental simple compression stress-strain curves conducted under a variety of strain-rates at a temperature in the supercooled liquid region [Lu, J., Ravichandran, G., Johnson, W., 2003. Deformation behavior of the Zr-Ti-Cu-Ni-Be bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429-3443].With the model calibrated, the constitutive model was able to reproduce the simple compression stress-strain curves for jump-in-strain-rate experiments to good accuracy. Furthermore stress-strain responses for simple compression experiments conducted at different ambient temperatures within the supercooled liquid region were also accurately reproduced by the constitutive model. Finally, shear localization studies also show that the constitutive model can reasonably well predict the orientation of shear bands for compression experiments conducted at temperatures within the supercooled liquid region [Wang, G., Shen, J., Sun, J., Lu, Z., Stachurski, Z., Zhou, B., 2005. Compressive fracture characteristics of a Zr-based bulk metallic glass at high test temperatures. Mater. Sci. Eng. A 398, 82-87].  相似文献   
9.
The constitutive responses of three glassy thermoset polymers at impact rates of strain and slower, together with measurements of adiabatic heating, were reported earlier by the authors. The results are interpreted here in the context of a constitutive model proposed previously for amorphous polymers, expanded to incorporate strain-softening and the adiabatic heating deficit. In terms of the model, both features are a natural consequence of strain-induced evolution of the glass structure, as represented by Tool's “fictive temperature”—the phenomenon of structural rejuvenation. A representation is proposed for the evolution of fictive temperature with plastic strain, motivated by an approximate treatment of the kinetics of physical ageing/rejuvenation. Formulated in this manner, the model agrees reasonably well with experimental results across the wide range of strain rates of the previous experiments, 10−3 to , and across most of the range of strain to failure in compression. At the highest strains, however, an additional adiabatic heating deficit appears that is not predicted by the model, either suggesting the onset of structural breakdown possibly associated with the appearance of cracks or reflecting a need for better physical understanding of large deformations in glassy polymers.  相似文献   
10.
We investigate experimentally -phage and T2-coliphage DNA molecules near both non-adsorbing glass and adsorbing 3-aminopropyltriethoxysilane (APTES)-coated glass surfaces in a simple steady shearing flow generated by a torsional flow cell. The DNA molecular deformations near the surface are found to be considerably weaker than in bulk flow at the same shear rate. This affects the DNA molecules deposition and stretching on the adsorbing surface. Surprisingly, for a simple shearing flow in the torsional shearing device, the observed stretch, for molecules both near (<10 µm) the surface and adsorbed to it, is much less than predicted by simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号