首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2020年   2篇
  2019年   3篇
排序方式: 共有5条查询结果,搜索用时 876 毫秒
1
1.
Polynary single‐atom structures can combine the advantages of homogeneous and heterogeneous catalysts while providing synergistic functions based on different molecules and their interfaces. However, the fabrication and identification of such an active‐site prototype remain elusive. Here we report isolated diatomic Ni‐Fe sites anchored on nitrogenated carbon as an efficient electrocatalyst for CO2 reduction. The catalyst exhibits high selectivity with CO Faradaic efficiency above 90 % over a wide potential range from ?0.5 to ?0.9 V (98 % at ?0.7 V), and robust durability, retaining 99 % of its initial selectivity after 30 hours of electrolysis. Density functional theory studies reveal that the neighboring Ni‐Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO‐adsorbed moiety upon CO2 uptake.  相似文献   
2.
3.
The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self-decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single-atom catalysts (Fe-N-C SACs) as an advanced co-reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe-N-C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe-N-C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox.  相似文献   
4.
The hydroformylation of olefins is one of the most important homogeneously catalyzed industrial reactions for aldehyde synthesis. Various ligands can be used to obtain the desired linear aldehydes in the hydroformylation of aliphatic olefins. However, in the hydroformylation of aromatic substrates, branched aldehydes are formed preferentially with common ligands. In this study, a novel approach to selectively obtain linear aldehydes in the hydroformylation of styrene and its derivatives was developed by coupling with a water–gas shift reaction on a Rh single-atom catalyst without the use of ligands. Detailed studies revealed that the hydrogen generated in situ from the water–gas shift is critical for the highly regioselective formation of linear products. The coupling of a traditional homogeneous catalytic process with a heterogeneous catalytic reaction to tune product selectivity may provide a new avenue for the heterogenization of homogenous catalytic processes.  相似文献   
5.
Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI ‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min?1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号