首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26218篇
  免费   1706篇
  国内免费   4455篇
化学   25890篇
晶体学   540篇
力学   167篇
综合类   148篇
数学   1081篇
物理学   4553篇
  2024年   16篇
  2023年   226篇
  2022年   304篇
  2021年   470篇
  2020年   612篇
  2019年   1549篇
  2018年   723篇
  2017年   1522篇
  2016年   948篇
  2015年   858篇
  2014年   1107篇
  2013年   2369篇
  2012年   1760篇
  2011年   1811篇
  2010年   1296篇
  2009年   1563篇
  2008年   1750篇
  2007年   1818篇
  2006年   1687篇
  2005年   1499篇
  2004年   1485篇
  2003年   1221篇
  2002年   763篇
  2001年   626篇
  2000年   585篇
  1999年   411篇
  1998年   372篇
  1997年   457篇
  1996年   373篇
  1995年   407篇
  1994年   292篇
  1993年   271篇
  1992年   261篇
  1991年   183篇
  1990年   114篇
  1989年   103篇
  1988年   78篇
  1987年   50篇
  1986年   47篇
  1985年   62篇
  1984年   39篇
  1983年   20篇
  1982年   45篇
  1981年   53篇
  1980年   26篇
  1979年   48篇
  1978年   20篇
  1977年   20篇
  1976年   18篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59–201 mg) and extraction time (6–34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.  相似文献   
2.
Yuanchao Huang 《中国物理 B》2022,31(4):46104-046104
The p-type doping efficiency of 4H silicon carbide (4H-SiC) is rather low due to the large ionization energies of p-type dopants. Such an issue impedes the exploration of the full advantage of 4H-SiC for semiconductor devices. In this study, we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant, i.e., aluminum (Al), through the defect-level repulsion between the energy levels of group-IVB elements and that of Al in 4H-SiC. Among group-IVB elements Ti has the most prominent effectiveness. Ti decreases the ionization energy of Al by nearly 50%, leading to a value as low as ~0.13 eV. As a result, the ionization rate of Al with Ti co-doping is up to ~5 times larger than that without co-doping at room temperature when the doping concentration is up to 1018 cm-3. This work may encourage the experimental co-doping of group-IVB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4H-SiC.  相似文献   
3.
氢能的引入能有效提升配电网的供电可靠性,而电解水制氢是实现低碳转型的关键技术,开发高效的电解水催化剂势在必行。过渡金属氧化物储量大、催化活性高,是具有广阔应用前景的析氧反应催化剂。本文通过射频等离子体处理制备石墨烯上负载Co3O4析氧催化剂,XRD、Raman和XPS测试结果显示,二维结构石墨烯的引入加速表面电子迁移,增大了反应面积。等离子体处理促进了纳米粒子在石墨烯上的负载,利用等离子体刻蚀作用在催化剂表面制造出大量碳结构缺陷和氧空位结构,改善了活性位点分布,有效调控Co3O4电子结构,提高析氧催化活性。电化学测试表明,本文中合成的Co3O4@rGO在电流密度为50 mA·cm-2时的过电位为410 mV,动力学反应速率较快,表现出优于商业IrO2的析氧催化活性。  相似文献   
4.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
5.
Magnetically retrieval CuFe2O4@MIL-101(Cr) metal–organic framework was successfully prepared from easily available starting materials and characterized using various spectroscopic and analytical techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, elemental mapping, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, vibrating sample magnetometer, and inductively coupled plasma optical emission spectroscopy. The catalyst was then used in the synthesis of benzodiazepines containing a triazole moiety in water. The advantages of this protocol include high yields, reusability of the catalyst, and gram-scale synthesis.  相似文献   
6.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   
7.
Novel cobalt complex of 4‐amino‐N‐(6‐chloropyridazin‐3‐yl)benzene sulfonamide (sulfachloropyridazine) has been synthesized and characterized by elemental analysis, FT‐IR spectroscopy and magnetic susceptibility (VSM). Cobalt complex of Sulfachloropyridazine (Co‐SCP) crystallized in monoclinic space group P21/n with Z = 4. The structure is solved by direct method and refined to R = 0.099 for 4720 reflections with I ?4σ(I). The results of FT‐IR spectra suggest the binding of cobalt atom to the sulfonamide ligand which is in agreement with the crystal structure determination. In crystal structure, molecule is linked via, C‐H … π, C‐Cl … π and π … π intermolecular interactions. The computational studies like the optimization energy and root means square deviation compare with single crystal structure, frontier molecular orbital (Homo‐Lumo energy) and binding energy of the Co‐SCP has been carried out using DFT/B3LYP level of theory in gaseous phase. Hirshfeld surfaces and the 2D‐fingerprint analysis are performed to study the nature of interactions and their measurable contributions towards crystal packing. The interaction of the complex with DNA is investigated using viscosity measurement and absorption titration studies. The result shows the complex bind to DNA with intercalative mode with high DNA‐binding constant (Kb). Also, in vivo and in vitro cytotoxic studies are performed using S. pombe cells and brine shrimp lethality bioassay. DNA‐cleavage study shows better cleaving ability of the complex.  相似文献   
8.
9.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号