首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2020年   3篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Efficient carbon-based nitrogen-doped electrocatalysts derived from waste biomass are regarded as a promising alternative to noble metal catalysts for oxygen reduction reaction (ORR), which is crucial to fuel cell performance. Here, coconut palm leaves are employed as the carbon source and a series of nitrogen-doped porous carbons were prepared by virtue of a facile and mild ultrasound-assisted method. The obtained carbon material (ANDC-900-10) conveys excellent pH-universal catalytic activity with onset potentials (Eonset) of 1.01, 0.91 and 0.84 V vs. RHE, half-wave potentials (E1/2) of 0.87, 0.74 and 0.66 V vs. RHE and limiting current densities (JL) of 5.50, 5.45 and 4.97 mA cm−2 in alkaline, neutral and acidic electrolytes, respectively, prevailing over the commercial Pt/C catalyst and, what's more, ANDC-900-10 displays preeminent methanol crossover resistance and long-term stability in the broad pH range (0–13), thanks to its abundant hierarchical nanopores as well as effective nitrogen doping with high-density pyridinic-N and graphitic-N. This work provides sonochemical insight for underpinning the eco-friendly approach to rationally designing versatile metal-free carbon-based catalysts toward the ORR at various pH levels.  相似文献   
2.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   
3.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   
4.
《中国化学快报》2020,31(9):2478-2482
High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy. In this work, we report a robust and highly active catalyst fabricated through direct electrochemical deposition of Pt nanodendrites at the surface of activated carbon (Pt NDs). Owing to the large electrochemically active area and the exposed (111) facet of Pt, Pt NDs exhibits outstanding activity towards hydrogen evolution reaction with a low requiring overpotential of 0.027 V at 10 mA/cm2 and Tafel slope of ≈ 22 mV/dec in acidic media. In addition, the hydrogen yield of Pt NDs is 30%–45% larger than that of commercial Pt/C at the same Pt loadings. Moreover, Pt NDs exhibits excellent long-term durability whose hydrogen production efficiency remains unchanged after six-hour hydrogen production, while the efficiency of commercial Pt/C catalyst decayed 9% under the same circumstance. Considering the superiority of catalytic activity and stability, this Pt NDs present great potentiality towards practical hydrogen production application.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号