首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2012年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
We report Raman scattering results of wurtzite ZnS nanowires, nanocombs, and nanobelts. The Raman spectrum obtained from ZnS nanowires exhibits first‐order phonon modes at 272, 284, and 350 cm−1, corresponding to A1/E1 transverse optical, E2 transverse optical, and A1/E1 longitudinal optical phonons, respectively. Several multiphonon modes are also observed. The longitudinal optical phonon mode varies in wavenumber for nanocombs and nanobelts, indicating that the residual strain varies during the morphological change from ZnS nanowires to nanocombs and ultimately to nanobelts. Interestingly, a surface optical (SO) phonon mode varies in wavenumber depending on the shape and surface roughness of the ZnS nanostructures. The surface modulation wavelengths of the ZnS nanowires, nanocombs, and nanobelts are estimated using the SO phonon dispersion relations and the observed SO phonon wavenumbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
ZnO nanocombs with different sizes are synthesized by simple thermal evaporation methods. Scanning electron microscopy and transmission election microscopy testify the growth of single crystal ZnO nanocombs along [0 0 0 2] direction. The temperature-dependent Raman spectra show that the intensity of surface optical (SO) modes in ZnO nanocombs obviously increases with declining measure temperatures. With the decrease of diameters, the frequency of SO modes shows a blue shift due to the passivation of surface states. The resonant Raman scattering shows that the strength of electron–phonon coupling increases with decreasing size. Calculated on size-dependent electron–phonon interaction energy agrees well with measured values for a large size range. The origin of electron–phonon coupling in ZnO nanocombs is also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号