首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2022年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The spin density matrix formalism has been applied to rotational-echo double-resonance (REDOR), transferred-echo double-resonance (TEDOR) and two-dimensional (2D) TEDOR experiments in order to obtain an expression for the signal intensities. TEDOR spectra of 15N-labeled glycine were measured with different dipolar evolution times. 2D-TEDOR spectra were measured of doubly labeled glycine-2-13C, 15N and of 15N-labeled glycine. Both the TEDOR and the 2D-TEDOR spectra were readily obtained although the 2D-TEDOR experiment on 15N-labeled glycine used a lot of machine time. Even though the 15N-1-13C dipolar coupling is relatively small (200 Hz), the 1-C resonance can still be observed.  相似文献   
2.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for 1H–13C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR π-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized 1H–13C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with 13C in natural abundance, as well as simulations, confirm the very weak effect of 1H–1H homonuclear couplings on the spectra recorded with spinning frequencies of 25–30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CHn groups is discussed, and 13C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   
3.
Through biomineralization, calcareous composites are produced with exceptional properties, evolution-optimized for specific function. The bioinspired quest to understand how properties are controlled and enhanced is motivated by their fundamental and technological significance. The incorporation of small molecules and/or biopolymers as inter- and intra-crystalline additives in the CaCO3 matrix, is widely employed by organisms to achieve diverse functions. The interactions between the components during the early events within the precipitation medium, and when entrapped through precipitation-crystallization, are key players of process–property regulation. In addition to identifying the bulk matrices and the incorporated molecules, we show how solid-state NMR methods are tailored to directly report the chemical-structural details of the inorganic interface that surrounds an occlusion. Solid-state NMR is uniquely suited for that and is applicable to stable or spontaneously transforming lattices, crystalline or amorphous. Our findings are grouped to highlight the connection between the molecular level and tunability of macroscopic properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号