首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
力学   3篇
数学   1篇
物理学   3篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
排序方式: 共有7条查询结果,搜索用时 296 毫秒
1
1.
Bag breakup of nonturbulent liquid jets in crossflow   总被引:1,自引:0,他引:1  
An experimental investigation of the bag breakup of round nonturbulent liquid jets in gaseous crossflow at room temperature and pressure is described. Pulsed photography, pulsed shadowgraphy, and high-speed imaging were used to observe the column and surface waves along the liquid jet and the formation and breakup of bags. Measurements included: wavelengths of column and surface waves, jet velocities, the number of bags along the liquid jet, the number of nodes per bag, droplets sizes and velocities, and trajectories of droplets. Present results show that the column waves of a nonturbulent liquid jet in crossflow within bag breakup regime can be explained based on Rayleigh–Taylor instability. The number of nodes per bag affected the breakup mechanism of the bags. Three distinctive sizes of droplets were produced due the breakup of the bag membrane, the ring strings and the ring nodes. The size of the droplets resulting from the breakup of the bag membrane was constant independent of the crossflow Weber number. Finally different trajectories were observed for the three groups of droplets.  相似文献   
2.
In counterflow cooling towers, non-uniform patterns of flow are the consequence of the application of water from circular spray nozzles set in a square manifold. A detailed computational model for the performance of a tower accounting for this non-uniform water flow in cellular packing has been developed. The radial spray pattern of individual nozzles producing the best possible thermal performance was determined by optimization. It was concluded that for a particular nozzle manifold and packing arrangement, a performance limitation exists due to the inherently non-uniform pattern of water flow.  相似文献   
3.
A modified Reynolds stress turbulence model for the pressure rate of strain can be derived for dispersed two-phase flows taking into account gas-particle interaction. The transport equations for the Reynolds stresses as well as the equation for the fluctuating pressure can be derived starting from the multiphase Navier–Stokes equations. The unknown pressure rate of strain correlation in the Reynolds stress equations is then modelled by considering the multiphase equation for the fluctuating pressure. This leads to a multiphase pressure rate of strain model. The extra particle interaction source terms occurring in the model for the pressure rate of strain can be constructed easily, with no noticeable extra computational cost. Eulerian–Lagrangian simulation results of a turbulent dispersed two-phase jet are presented to show the differences in results with and without the new two-way coupling terms.  相似文献   
4.
Direct Numerical Simulations of expanding flame kernels following localized ignition in decaying turbulence with the fuel in the form of a fine mist have been performed to identify the effects of the spray parameters on the possibility of self-sustained combustion. Simulations show that the flame kernel may quench due to fuel starvation in the gaseous phase if the droplets are large or if their number is insufficient to result in significant heat release to allow for self-sustained flame propagation for the given turbulent environment. The reaction proceeds in a large range of equivalence ratios due to the random location of the droplets relative to the igniter location that causes a wide range of mixture fractions to develop through pre-evaporation in the unreacted gas and through evaporation in the preheat zone of the propagating flame. The resulting flame exhibits both premixed and non-premixed characteristics.  相似文献   
5.
Large-eddy simulation of evaporating spray in a coaxial combustor   总被引:1,自引:0,他引:1  
Large-eddy simulation of an evaporating isopropyl alcohol spray in a coaxial combustor is performed. The Favre-averaged, variable density, low-Mach number Navier-Stokes equations are solved on unstructured grids with dynamic subgrid scale model to compute the turbulent gas-phase. The original incompressible flow algorithm for LES on unstructured grids by [Mahesh et al., J. Comp. Phys. 197 (2004) 215–240] is extended to include density variations and droplet evaporation. An efficient particle-tracking scheme on unstructured meshes is developed to compute the dispersed phase. Experimentally measured droplet size distribution and size-velocity correlation near the nozzle exit are used as the inlet conditions for the spray. The predictive capability of the LES approach on unstructured grids together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail. The mean and turbulent quantities for the gas and particle phases are compared to experimental data to show good agreement. It is shown that for low evaporation rates considered in the present study, a well resolved large-eddy simulation together with simple subgrid models for droplet evaporation and motion provides good agreement of the mean and turbulent quantities for the gas and droplet phases compared to the experimental data. This work represents an important first step to assess the predictive capability of the unstructured grid LES approach applied to spray vaporization. The novelty of the results presented is that they establish a baseline fidelity in the ability to simulate complex flows on unstructured grids at conditions representative of gas-turbine combustors.  相似文献   
6.
Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed. The filtered Navier–Stokes equations with dynamic subgrid scale model are solved on unstructured grids to compute the swirling turbulent flow through complex passages of the injector. The collocated grid, incompressible flow algorithm on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phys. 197 (2004) 215–240) is used in this work. A Lagrangian point-particle formulation with a stochastic model for droplet breakup is used for the liquid phase. Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete random process, the droplet breakup is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. The size and number density of the newly produced droplets is governed by the Fokker–Planck equation for the evolution of the pdf of droplet radii. The parameters of the model are obtained dynamically by relating them to the local Weber number and resolved scale turbulence properties. A hybrid particle-parcel is used to represent the large number of spray droplets. The predictive capability of the LES together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail by comparing it with the spray patternation study for the gas-turbine injector. The present approach is computationally efficient and captures the global features of the fragmentary process of liquid atomization in complex configurations.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号