首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   26篇
化学   2篇
晶体学   1篇
物理学   389篇
  2010年   4篇
  2009年   49篇
  2008年   55篇
  2007年   43篇
  2006年   26篇
  2005年   10篇
  2004年   6篇
  2003年   23篇
  2002年   19篇
  2001年   15篇
  2000年   37篇
  1999年   16篇
  1998年   34篇
  1997年   4篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
排序方式: 共有392条查询结果,搜索用时 171 毫秒
1.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   
2.
Experimental results of laser sputtering of cesium and rubidium iodide secondary ions are presented. A TOF mass spectrometer, operating in linear mode, continuous extraction for positive or negative ions, was used for the analysis of (CsI)nCs+, (CsI)nI, (RbI)nRb+ and (RbI)nI ion emission as a function of the laser irradiance. Experimental data show that the cluster ion emission yields decrease exponentially with n, for all the laser irradiances applied. Theoretical analysis of the clusters structure was performed using density functional theory at the B3LYP/LACV3P level, for the positive and negative cluster series. A quasi-equilibrium evolution of the clusters is proposed to extract a parameter characteristic of the cluster recombination process: the effective temperature. The hypothesis of the atomic species’ recombination (during the expansion of a high density highly ionized cloud) leading to cluster formation is confirmed to some extent in a second set of experiments: the UV laser ablation of a mixed and non-mixed cesium iodide and potassium bromide targets. These experiments show that the emission yields contain contributions from both the recombination process and from the sample stoichiometry, even for high laser irradiances.  相似文献   
3.
We generalize the Shastry-Sutherland model to three dimensions. By representing the model as a sum of the semidefinite positive projection operators, we exactly prove that the model has exact dimer ground state. Several schemes for constructing the three-dimensional Shastry-Sutherland model are proposed. Received 20 February 2002 / Received in final form 27 May 2002 Published online 17 September 2002  相似文献   
4.
By using a Q-switched YAG Laser and a optical path delay set-up, we study the process in whith a laser induces breakdown to produce plasma in air, and obtain time-resolved Mach-Zehnder interferograms and optical shadowgrams of the initial stage of the plasma and the expansion wave produced in the process for the first time  相似文献   
5.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   
6.
Heterometallic molecular chromium wheels are fascinating new magnetic materials. We reexamine the available experimental susceptibility data on MCr7 wheels in terms of a simple isotropic Heisenberg Hamiltonian for M=Fe, Ni, Cu, and Zn and find in that FeCr7 needs to be described with an iron–chromium exchange that is different from all other cases. In a second step we model the behavior of the proton spin lattice relaxation rate as a function of applied magnetic field for low temperatures as it is measured in nuclear magnetic resonance (NMR) experiments. It appears that CuCr7 and NiCr7 show an unexpectedly reduced relaxation rate at certain level crossings.  相似文献   
7.
The absorption of laser light in 0.25–1 mm diameter gold cavities, irradiated for the purpose of generating high-temperature blackbody radiation with intense laser radiation of either =0.44 m or =1.3 m wavelength, was investigated. For =0.44 m radiation the absorption exceeded 0.9 for all conditions, but dropped to only 0.3 for the smallest cavities irradiated at =1.3 m. Entrance hole and cavity filling with plasma seems important for the understanding of the observations.  相似文献   
8.
We present Electron-Spin-Resonance experiments in the frequency range 35–420 GHz in magnetic fields up to 14 T and with temperatures down to 1.5 K. The quasi-onedimensionalS=1 Spin Systems NENP and NINO exhibit similar resonance-modes, which can be associated with transitions between excited states atq= and excitations from the groundstate. Groundstateexcitation can be explained with regard to a transverse staggered field due to inequivalent Ni2+-sites along the chains. Several features are discussed like polarisation-and temperature dependence of line-intensity and the angular and temperature-dependence of resonance-field.  相似文献   
9.
We present an investigation of the spin-Peierls transition atT SP=14.5 K in polycrystalline CuGeO3 through specific-heat and thermal-expansion measurements. Clear second-order phase-transition anomalies are found in both properties atT SP, although only a small entropy of S0.1 Rn2 is released at the transition. Most of the entropy is released atT SP<T<150 K, where the temperature dependence of the magnetic contribution to the specific heat as well as the thermal expansion exhibit extrema atT *40 K. These are caused by one-dimensional antiferromagnetic fluctuations along the Cu chains, possibly accompanied by structural fluctuations. Using Ehrenfest's relation, a hydrostatic pressure coefficient (T SP/p)p0 (0.45±0.06) K/kbar is derived.  相似文献   
10.
The static and dynamic spin fluctuations in the spinS=1, two-dimensional (2D) square-lattice antiferromagnet La2NiO4 have been studied over a wide temperature range using neutron scattering techniques. The spin correlations in La2NiO4 exhibit a crossover from two- to three-dimensional (3D) behavior as the Néel temperature is approached from above. Critical slowing down of the low-energy spin fluctuations is also observed just aboveT N . The correlation length, (T), and the static structure factor,S(0), have been measured and are compared with recent theoretical calculations for the quantum 2D Heisenberg antiferromagnet using microscopic parameters determined from previous spin-wave measurements. Good agreement for (T) is found with the exact low-temperature result of Hasenfratz and Niedermeyer provided that 2 p s is renormalized by 20% from the spin-wave value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号