首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.
The first-principle calculations based on spin-polarized density functional theory were performed to investigate the structural, electronic and magnetic properties of TiTe compound. The results showed that the ground state phase of TiTe is a non-magnetic NiAs structure and the zincblende (ZB) TiTe structure becomes stable at −5.2 GPa. It was predicted that the ZB structure is a half-metal ferromagnet with a magnetic moment of per formula unit for the equilibrium lattice parameter. The minority- spin and spin-flip gaps were calculated equal to 2.84 eV and 0.2 eV, respectively. In addition, the reasons for appearance of half-metallicity and magnetism in the ZB TiTe were discussed. It was noted that the half-metallicity characteristic exists within a wide range of lattice constant which makes the ZB TiTe an interesting material in the field of spintronics.  相似文献   
2.
The effect of doping V on the electronic structure and magnetic properties of Mn3Al has been studied by density functional calculations. It is found that the V atoms for all the doped compounds prefer to enter into the B sites, and further they tend to enter into the (A, C) sites in Mn3Al. The calculations show that the alloys (Mn12−xVx)Al4 (x=0, 1, 2, 3, 4, 5, 6, 7) are ferrimagnetic whereas V2MnAl (x=8) is nonmagnetic. The compounds of x=0, 1, 2, 3, 4 exhibit the half-metallic character, and the compound of x=5 shows a nearly half-metallicity since the Fermi level slightly touches the valence bands. For x=6 and 7, the spin polarization is 59% and 69%, respectively. The reason is mainly attributed to the behavior of Mn(A,C)/V(A,C) atoms.  相似文献   
3.
The electronic structure and magnetic properties of Co-doped Heusler alloys (Mn1−xCox)2 VGa (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied by first-principles calculations. The results show that the lattice constants decrease with increasing Co content except x=1.0. The spin polarization for x=0.5 is only 34%, much lower than the other concentrations. The compounds of x=0.0, 0.25 show nearly half-metallicity because the Fermi level slightly touches the valence bands. And the compounds of x=0.75, 1.0 exhibit the half-metallic character with 100% spin polarization. It is found the local moments of Mn(Co) basically show a linear increasing trend while the moments of V show a linear decreasing trend with increasing doping concentration. However, the local moments for x=0.5 quite depart from the linear trend. The majority-spin component at the Fermi level increases while the minority-spin component at the Fermi level decreases with the substitution of Co atoms for Mn atoms when x≤0.75. For x≥0.75, the majority-spin component remains more or less the same and the gap in the minority DOS increases with Co doping. The majority spin states are shifted to valence bands and the majority spin states around EF increase due to a leakage of charge from the unoccupied spin-up states to the occupied majority states with increasing Co content.  相似文献   
4.
We present an extended study of single impurity atoms at the interface between the half-metallic ferromagnetic zinc-blende CrAs compound and the zinc-blende binary InAs and CdSe semiconductors in the form of very thin multilayers. Contrary to the case of impurities in the perfect bulk CrAs studied in Galanakis and Pouliasis [J. Magn. Magn. Mater. 321 (2009) 1084] defects at the interfaces do not alter in general the half-metallic character of the perfect systems. The only exception are Void impurities at Cr or In(Cd) sites which lead, due to the lower-dimensionality of the interfaces with respect to the bulk CrAs, to a shift of the p bands of the nearest neighboring As(Se) atom to higher energies and thus to the loss of the half-metallicity. But Void impurities are Schottky-type and should exhibit high formation energies and thus we expect the interfaces in the case of thin multilayers to exhibit a robust half-metallic character.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号