首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   1篇
  国内免费   6篇
化学   28篇
晶体学   3篇
力学   3篇
物理学   125篇
  2023年   2篇
  2022年   3篇
  2020年   4篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   13篇
  2012年   4篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   3篇
  2002年   11篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1988年   1篇
  1978年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
The irreproducibility of electrical properties of Na0.88Li0.12NbO3 solid solution on thermal cycling reported by M.A.L. Nobre and S. Lanfredi is explained by gradual decomposition of the supersaturated solid solution below ca. 800 °C.  相似文献   
2.
K. Franke 《Surface science》2005,585(3):144-154
Polarization switching in scanning force microscopy (SFM) is influenced by both electric fields and stress, whereby the latter can arise inherently from Maxwell stress. We discuss the influence of electric charges and of the polarization asymmetry on the switching behaviour. For single crystallites of PZT(53/47) thin films, the sectors for ferroelectric, ferroelastoelectric and ferroelastic switching are represented in a field-stress map. The influence of stress on the second harmonic of the SFM is also discussed.  相似文献   
3.
The complex perovskite solid solution (1−x) Pb(In1/2Nb1/2)O3-(x) Pb(Ni1/3Nb2/3)O3 has been successfully prepared by the Columbite precursor method. The temperature dependencies of the dielectric constant and pyroelectric coefficient were measured between −261 and 200 °C. Relaxor ferroelectric behavior has been noticed in all compositions across the solid solution. The room-temperature electrostrictive coefficient, Q33, was 1.83×10−2 C2/m4 for x=0.10. No room-temperature piezoelectric activity was detected; however, upon cooling to −261 °C the maximum coupling coefficients kp=29%, kt=11%, and k33=31% were observed for the composition x=1.00.  相似文献   
4.
The binary phase diagram of KNO3-KClO3 is studied by means of differential scanning calorimetry (DSC) and high-temperature X-ray diffraction. The limited solid solutions, K(NO3)1−x(ClO3)x (0<x<0.20) and K(NO3)1−x(ClO3)x (0.90<x<1.0), were formed in the KNO3-based solid solutions and KClO3-based solid solutions phase, respectively. For KNO3-based solid solutions, KNO3 ferroelectric phase can be stable from 423 to 223 K as a result of substituting of NO3 by ClO3-radicals. The temperatures for solidus and liquidus have been determined based on limited solid solutions. Two models, Henrian solution and regular solution theory for KNO3-based (α) phase and KClO3-based (β) phase, respectively, are employed to reproduce solidus and liquidus of the phase diagram. The results are in good agreement with the DSC data. The thermodynamic properties for α and β solid solutions have been derived from an optimization procedure using the experimental data. The calculated phase diagram and optimized thermodynamic parameters are thermodynamically self-consistent.  相似文献   
5.
We demonstrate that ferroelectric liquid crystals dispersed in a polymer matrix can form uniaxially aligned elliptical droplets. The alignment is controlled by mechanical shear during the polymerization of a UV-curable adhesive. The possibility of prealignment makes polymer-dispersed ferroelectric liquid crystals suitable for application in flexible electro-optical displays. In contrast to surface stabilized ferroelectric liquid crystal displays, the electro-optical effect in our system is due to the deformed-helix ferroelectric (DHF) effect.  相似文献   
6.
张闻 《大学化学》2017,32(7):1-7
作为铁磁性材料的电等价物,铁电体具有宏观自发电极化,表现出电滞回线等特性,在存储、能量转换、开关、传感等方面得到广泛应用。由于分子材料的特性,分子基铁电体可望作为无机陶瓷铁电体的有益补充和替代。本文围绕铁电的基本概念、原理和特征,针对分子基铁电体的基础研究进展,进行简要综述。  相似文献   
7.
A first-principles investigation of the origin of ferroelectricity in the Aurivillius compound Bi2VO5.5 is presented. Calculations with the density functional theory, in conjunction with the modern theory of polarization, allowed us to study the structural, electronic, and polar properties of two configurations built with oxygen vacancies, causing a charge imbalance and a subsequent displacement of the ions, generating two maximum polarizations, one of 14.75 μC/cm2 and one of 4.31 μC/cm2 along [011] direction. Electron localization function schemes were used to identify the asymmetry of charges in (001), (010) and (100) planes. The results obtained in this study establish that the origin of ferroelectricity is due to the displacement of the ions caused by oxygen vacancies and the asymmetric distribution of the isolated pair of Bi ions. On the other hand, the bandgap calculations and the results of Ps establish that Bi2VO5.5 is a candidate ferro-photovoltaic material.  相似文献   
8.
In this work, we reported the effect of Li2CO3 addition on the structural, optical, ferroelectric properties and electric-field-induced strain of Bi0.5(Na,K)0.5TiO3 (BNKT) solid solution with CaZrO3 ceramics. Both rhombohedral and tetragonal structures were distorted after adding Lithium (Li). The band gap values decreased from 2.91 to 2.69 eV for 5 mol% Li-addition. The maximum polarization and remanent polarization decreased from 49.66 μC/cm2 to 27.11 μC/cm2 and from 22.93 μC/cm2 to 5.35 μC/cm2 for un-doped and 5 mol% Li- addition BNKT ceramics, respectively. The maximum Smax/Emax value was 567 pm/V at 2 mol% Li2CO3 access. We expected this work will help to understand the role of A-site dopant in lead-free ferroelectric BNKT materials.  相似文献   
9.
10.
《Current Applied Physics》2015,15(3):194-200
BiFeO3 (BFO) thin films with thickness increasing from 40 to 480 nm were successfully grown on LaNiO3 (LNO) buffered Pt/Ti/SiO2/Si(100) substrate and the effects of thickness evolution on magnetic and ferroelectric properties are investigated. The LNO buffer layer promotes the growth and crystallization of BFO thin films. Highly (100) orientation is induced for all BFO films regardless of the film thickness together with the dense microstructure. All BFO films exhibited weak ferromagnetic response at room temperature and saturation magnetization is found to decrease with increase in film thickness. Well saturated ferroelectric hysteresis loops were obtained for thicker films; however, the leakage current dominated the ferroelectric properties in thinner films. The leakage current density decreased by three orders of magnitude for 335 nm film compared to 40 nm film, giving rise to enhanced ferroelectric properties for thicker films. The mechanisms for the evolution of ferromagnetic and ferroelectric characteristics are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号