首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   12篇
  国内免费   32篇
化学   112篇
晶体学   5篇
力学   3篇
数学   17篇
物理学   217篇
  2023年   3篇
  2022年   8篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   3篇
  2017年   12篇
  2016年   3篇
  2015年   12篇
  2014年   8篇
  2013年   54篇
  2012年   10篇
  2011年   15篇
  2010年   19篇
  2009年   20篇
  2008年   18篇
  2007年   17篇
  2006年   20篇
  2005年   7篇
  2004年   11篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有354条查询结果,搜索用时 218 毫秒
1.
The radiation-induced decomposition of C4F9I and CF3I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy has been used for photoactivation as well as for studying the photodecomposition of the fluoroalkyl iodide molecules, the attachment of the photofragments to the diamond surface, and the thermal decomposition of the fluoroalkyl ligands. Measured chemical shifts agree well with ab initio calculations of both C 1s and F 1s binding energies. It is found that chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the range 300 to 700 K and this reactivity difference is rationalized on steric grounds. Both of these thermal decomposition processes produce surface C---F bonds on the diamond. The surface C---F species thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides; I atoms produced photolytically abstract H from surface C---H bonds to yield hydrogen iodide at 119 K allowing diamond fluorination. The attachment of chemisorbed F species to the diamond (100) surface causes band bending as the surface states are occupied as a result of chemisorption. This results in a shift to higher binding energy of the diamond-related C 1s levels present in the surface and subsurface regions which are sampled by XPS on the diamond. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the action of atomic F, molecular F2, XeF2 and F-containing plasmas.  相似文献   
2.
Electroanalytical and chromatographic methodologies have been applied for the determination of pentachlorophenol (PCP) and some of its derivatives in real soil samples contaminated by industrial discharge. The analytes were extracted with hexane from soil samples collected at different points of the site and mixed to produce a representative sample. Square wave voltammetry (SWV) experiments were carried out on either a boron-doped diamond (BDD) electrode or a gold ultramicroelectrode (Au-UME) in an analyte composed by the Britton-Robinson (B-R) buffer at pH 5.5 with the direct addition of proper amounts of the extract. The voltammetric responses revealed an irreversible anodic peak at approximately 0.80 V vs. Ag/AgCl with a peak current showing a linear dependence on PCP concentration. This linear relationship yielded a detection limit (DL) of 2×10−8 mol l−1 (or 5.5 μg l−1) for the BDD electrode and 6.9×10−8 mol l−1 (18.4 μg l−1) for the Au-UME, while the independently measured HPLC detection limit was 1.1×10−8 mol l−1 (3.0 μg l−1). The application of electroanalytical and chromatographic methodologies in the analysis of soil extracts revealed, besides the PCP responses, signals for some related molecules such as o-tetrachlorobenzoquinone (o-chloranil), hexachlorobenzene and tetrachlorophenol. Recovering experiments for PCP showed a concentration of 27.5 mg kg−1 for the electroanalytical determinations and 26.8 mg kg−1 for the HPLC analysis, values exceedingly high if considering that the maximum residue limit established for natural waters by the Brazilian Environmental Agency is 10 μg l−1.  相似文献   
3.
The effect of pressure during thermal plasma chemical vapor deposition of diamond films has been investigated for a pressure range from 100 to 760 Torr. The maximum growth rate in our experiments occurs at 270 Torr for substrate temperatures around 1000°C. The existence of an optimum pressure for diamond deposition may he related to the balance between generation and recombination of atomic hydrogen and carbon-containing active species in front of the substrate. To estimate the concentrations of atomic hydrogen and methyl radicals under thermal plasma conditions, calculations based on thermodynamic equilibrium have been performed. This approximate evaluation provides useful guidelines because rapid diffusion results in a near frozen chemistry within the boundary layer. The effect of substrate pretreatment on diamond deposition depends on the type of substrate used. Two growth modes have been observed-layer growth and island growth of diamond crystals on various substrates. Screw dislocations have been observed in diamond deposition in thermal plasmas, and defects such as secondary nucleations are more concentrated along (III) directions than along (100) directions.  相似文献   
4.
Diamond crystals and films have been success full y synthesized by DC thermal plasma jet CVD at a pressure of I atrn. A novel triple torch plasma reactor has been used to generate a convergent plasma volume to entrain the participating gases. Three coalescing plasma jets produces! by this reactor direct the dissociated and ionized gaseous species onto ( 100) silicon wafer substrates where the diamond grows. In a typical 10-min run, depending on the method of .substrate preparation, either microcrystals with sizes up to 8 m or continuous films with thicknesses of 1–2 m have been obtained. X-ray diffraction, scanning electron microscopy, and Raman spectroscopy have been used for the characterization of the crystals and of the films.  相似文献   
5.
Effects of process parameters on diamond film synthesis in DC thermal plasma jet reactors are discussed including substrate material, methane concentration and substrate temperature. Diamond has been deposited on silicon, molybdenum, tungsten, tantalum, copper, nickel, titanium, and stainless steel. The adhesion of diamond film to the substrate is greatly affected by the type of substrate used. It has been found that the methane concentration strongly affects the grain size of the diamond films. Increased methane concentrations result in smaller grain sizes due to the increased number of secondary nucleations on the existing facets of diamond crystals. Substrate temperature has a strong effect on the morphology of diamond films. With increasing substrate temperature, the predominant orientation of the crystal growth planes changes from the (111) to the (100) planes. Studies of the variation of the film quality across the substrate due to the nonuniformity of thermal plasma jets indicate that microcrystalline graphite formation starts at the corners and edges of diamond crystals when the conditions become unfavorable for diamond deposition.  相似文献   
6.
A new class of monocrystalline diamond paste-based electrodes is proposed for the determination of chromium(III) at trace levels in vitamins. Three types of monocrystalline diamond—natural diamond 1 (natural diamond), synthetic diamond 50 (synthetic-1), and synthetic diamond 1 (synthetic-2)—were used for electrode construction. The linear concentration ranges are between 10–10 and 10–8; 10–9 and 10–7, and 10–10 to 10–8 mol L–1, with limits of detection of 10–12, 10–12, and 10–11 mol L–1, when natural diamond, synthetic-1, and synthetic-2, respectively, are used as electrode materials. For electrodes based on natural diamond and synthetic-1 it was found that Cr(III) yields a peak at about +0.275±0.015 V (vs. Ag/AgCl) within a predetermined positive potential range situated between +0.4 and +0.2 V, while for the electrode based on synthetic-2 the peaks are found at +0.300±0.015 V (vs. Ag/AgCl). The proposed method is reliable for the determination of chromium(III) at trace levels in two vitamin tablets (RSD<0.2%).  相似文献   
7.
Using a mass spectrometric sampling method, we have observed the decomposition of CH4 in an rf plasma usedfor diamond deposition. The gas samples were extracted through an orifice located downstream of the plasma zone and analyzed online. For the experiments a dilute mixture of H2 and CH4 containing 0.1–3% CH4 has been used. CH4 is converted to C2H2 and C2H4 quantitatively. Small amounts of heavier hydrocarbons are formed. A comparison of the experimental results with a recent kinetic model treating a purely thermal environment is made and the differences between our experiment and the model are explained. The role of acetylene as a species formed in an atmosphere rich in atomic hydrogen is proposed. The electron impact dissociation process is suggested as the rare-determining step in the plasma-chemical decomposition of methane.  相似文献   
8.
The trapping of 5 keV deuterium in ~ 165 and ~ 4000 nm thick BeO films grown by thermal oxidation on Be substrates was investigated at different temperatures using the D(3He,H)4He nuclear reaction. The ratio of implanted D to BeO molecules obtained at saturation is 0.24 to 0.34. The D migrates from its end of range location and distributes itself uniformly in the BeO film. With increasing implant temperature the BeO layer flakes from the Be substrate. The distribution of D in BeO films at high concentrations is not consistent with diffusivity measurements at low concentrations of T in BeO.  相似文献   
9.
The structural-phase state of the contact zone and the factors that influence on the strength of diamond retention in the diamond carbide composites were determined. Composites were obtained by the new hybrid technology that eliminates the reheating of the metalized coating. The elaborated technology combines the thermal diffusion metallization of a diamond and the sintering by the scheme of self-dosed impregnation in a one-stage technological cycle. By the methods of electron microscopy, X-ray diffraction analysis, and Raman spectroscopy the structural and phase characteristics of the interphase boundary were investigated. The improvement of chemical and mechanical adhesion between the diamond and carbide matrix was obtained. It was shown that the specific productivity of the samples with a metalized diamond component is 39% higher than those without metallization.  相似文献   
10.
The magnetization of mixed spin-1/2, 1 Ising diamond chain with antiferromagnetic spin exchange interaction has been investigated by using the Monte Carlo simulation. Magnetization behaviors with different antiferromagnetic interactions are simulated under magnetic field at low temperature. The behaviors are studied in two different cases. In one case the absolute value of the interaction between two spin-1/2 atoms is the largest and in the other case it is not the largest. Multiple plateaus of magnetization M, such as plateaus at M=±1, M=0 and M=±0.566 are obtained. The plateaus at M=±0.566 correspond to two metastable states. The M=0 plateau may disappear at some specific values of spin exchange interactions. The spin configurations were checked when the plateaus appear. The dimmer and trimmer states are found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号