首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5597篇
  免费   407篇
  国内免费   586篇
化学   4316篇
晶体学   67篇
力学   231篇
综合类   35篇
数学   494篇
物理学   1447篇
  2024年   9篇
  2023年   86篇
  2022年   76篇
  2021年   95篇
  2020年   122篇
  2019年   123篇
  2018年   109篇
  2017年   116篇
  2016年   128篇
  2015年   143篇
  2014年   193篇
  2013年   397篇
  2012年   262篇
  2011年   248篇
  2010年   215篇
  2009年   348篇
  2008年   333篇
  2007年   354篇
  2006年   328篇
  2005年   279篇
  2004年   262篇
  2003年   200篇
  2002年   512篇
  2001年   190篇
  2000年   176篇
  1999年   187篇
  1998年   158篇
  1997年   152篇
  1996年   118篇
  1995年   118篇
  1994年   82篇
  1993年   82篇
  1992年   63篇
  1991年   59篇
  1990年   39篇
  1989年   34篇
  1988年   28篇
  1987年   19篇
  1986年   28篇
  1985年   24篇
  1984年   18篇
  1983年   9篇
  1982年   16篇
  1981年   15篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
排序方式: 共有6590条查询结果,搜索用时 769 毫秒
1.
2.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
3.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
4.
《Comptes Rendus Physique》2015,16(2):193-203
The field of multiferroics has experienced a rapid progress resulting in the discovery of many new physical phenomena. BiFeO3 (BFO) compound, which is one of the few room-temperature single-phase multiferroics, has contributed subsequently to this progress. As a result, significant review articles have been devoted specifically to this famous system. This chapter is dedicated to the strain effects on the structure stability and property changes of BFO thin films. It is a short and non-exhaustive topical overview that may be seen as an invitation for interested readers to go beyond. There is a very active and prolific research in this field and we apologize to the authors whose relevant work is not cited here. After a short introduction, we will thus review the effect of strain on BFO films by describing the consequences on the structure and the phase transitions as well as on polar, magnetic and magnetoelectric properties.  相似文献   
5.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests.  相似文献   
6.
《Comptes Rendus Mecanique》2019,347(4):318-331
In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.  相似文献   
7.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
8.
We report the results of experiments on electrically driven convection that occurs in a thin, freely suspended film of smectic A liquid crystal when an electric field is applied in the plane of the film. Convection in a vortex pattern is found above a well-defined critical voltage. The film behaves as a two-dimensional isotropic liquid: neither its thickness nor the director field are modified by the flow. We present measurements of the critical voltage at the onset of convection in two experimental configurations—one which allows the injection of charges into the film from the electrodes, and one which does not. When injection is present, the critical voltage for the onset of flow increases monotonically with increasing frequency of applied field. With no injection, there is no instability at DC and the critical voltage diverges there. The nature of the flow pattern observed at onset changes with frequency. Below a certain frequency the film flows in vortices that extend over the width of the film; above this frequency the flow is confined to two lines of smaller vortices localized along the electrodes. We present a simple discussion of the mechanisms which drive the convection.  相似文献   
9.
采用溶解-反应量热法在具有恒温环境的溶解-反应热量计内,测定了[Gd(Gly)4(Im)(H2O)](ClO4)3和[Y(Gly)4(Im)(H2O)](ClO4)3两种稀土甘氨酸咪唑配合物的标准生成焓分别为(-3 461.46 ±0.22) kJ·mol-1 和(-3 926.6±0.90) kJ·mol-1.  相似文献   
10.
利用激光溅射 分子束的技术 ,结合反射飞行时间质谱计 ,研究了Cu+、Ag+、Au+与乙硫醇的气相化学反应。结果显示这三种金属离子与 (CH3 CH2 SH) n 反应形成一系列团簇离子M+(CH3 CH2 SH) n,且团簇离子尺寸不一样。Ag+、Au+与乙硫醇的反应还生成了 (CH3 CH2 SH) +n ,由此推测Cu+、Ag+、Au+与乙硫醇团簇的反应存在两种通道 ,一种通道是生成M+(CH3 CH2 SH) n,另一种是生成 (CH3 CH2 SH) +n 。Cu+、Au+与乙硫醇的反应还生成了M+(H2 S) (M =Cu、Au) ,但是实验中没有观察到Ag+(H2 S) ,理论计算表明Ag+(H2 S)很不稳定。另外 ,分析产物离子M+(CH3 CH2 SH) n 的强度发现 ,n =1~ 2之间存在明显的强度突变现象  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号