首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
数学   2篇
物理学   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
When complex systems are monitored, multi-observations from several sensors or sources may be available. These observations can be fused through Bayesian theory to give a posterior probabilistic estimate of the underlying state which is often not directly observable. This forms the basis of a Bayesian control chart where the estimated posterior probability of the state can be compared with a preset threshold level to assess whether a full inspection is needed or not. Maintenance can then be carried out if indicated as necessary by the inspection. This paper considers the design of such multivariate Bayesian control chart where both the transition between states and the relationship between observed information and the state are not Markovian. Since analytical or numerical solutions are difficult for the case considered in this paper, Monte Carlo simulation is used to obtain the optimal control chart parameters, which are the monitoring interval and the upper control limit. A two-stage failure process characterised by the delay time concept is used to describe the underlying state transition process and Bayesian theory is used to compute the posterior probability of the underlying state, which is embedded in the simulation algorithm. Extensive examples are shown to demonstrate the modelling idea.  相似文献   
2.
Remaining useful life (RUL) estimation is regarded as one of the most central components in prognostics and health management (PHM). Accurate RUL estimation can enable failure prevention in a more controllable manner in that effective maintenance can be executed in appropriate time to correct impending faults. In this paper we consider the problem of estimating the RUL from observed degradation data for a general system. A degradation path-dependent approach for RUL estimation is presented through the combination of Bayesian updating and expectation maximization (EM) algorithm. The use of both Bayesian updating and EM algorithm to update the model parameters and RUL distribution at the time obtaining a newly observed data is a novel contribution of this paper, which makes the estimated RUL depend on the observed degradation data history. As two specific cases, a linear degradation model and an exponential-based degradation model are considered to illustrate the implementation of our presented approach. A major contribution under these two special cases is that our approach can obtain an exact and closed-form RUL distribution respectively, and the moment of the obtained RUL distribution from our presented approach exists. This contrasts sharply with the approximated results obtained in the literature for the same cases. To our knowledge, the RUL estimation approach presented in this paper for the two special cases is the only one that can provide an exact and closed-form RUL distribution utilizing the monitoring history. Finally, numerical examples for RUL estimation and a practical case study for condition-based replacement decision making with comparison to a previously reported approach are provided to substantiate the superiority of the proposed model.  相似文献   
3.
针对舰载机多机种一体化自主保障中机载设备的维修保障需求,提出了基于信息源特征分析的航空关键部附件故障预测方法。首先,从信息源数据特征、研究对象判定、用于预测的可用信息及不确定性四个角度对信息源特征的复杂性进行了分析;其次,根据航空部附件故障频率和平均停机维修时间采用四象限图实现航空关键部附件的判定;最后,基于信息源不同可用信息选择不同的故障预测方法,并介绍了智能融合的神经网络算法和能够消除不确定性的非线性滤波方法,提高了航空部附件故障预测方法的通用性和准确性。  相似文献   
4.
Class prediction based on DNA microarray data has been emerged as one of the most important application of bioinformatics for diagnostics/prognostics. Robust classifiers are needed that use most biologically relevant genes embedded in the data. A consensus approach that combines multiple classifiers has attributes that mitigate this difficulty compared to a single classifier. A new classification method named as consensus analysis of multiple classifiers using non-repetitive variables (CAMCUN) was proposed for the analysis of hyper-dimensional gene expression data. The CAMCUN method combined multiple classifiers, each of which was built from distinct, non-repeated genes that were selected for effectiveness in class differentiation. Thus, the CAMCUN utilized most biologically relevant genes in the final classifier. The CAMCUN algorithm was demonstrated to give consistently more accurate predictions for two well-known datasets for prostate cancer and leukemia. Importantly, the CAMCUN algorithm employed an integrated 10-fold cross-validation and randomization test to assess the degree of confidence of the predictions for unknown samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号