首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
数学   33篇
  2014年   6篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
排序方式: 共有33条查询结果,搜索用时 703 毫秒
1.
The aim of this paper is to propose an algorithm based on the philosophy of the Variable Neighborhood Search (VNS) to solve Multi Depot Vehicle Routing Problems with Time Windows. The paper has two main contributions. First, from a technical point of view, it presents the first application of a VNS for this problem and several design issues of VNS algorithms are discussed. Second, from a problem oriented point of view the computational results show that the approach is competitive with an existing Tabu Search algorithm with respect to both solution quality and computation times.  相似文献   
2.
This paper considers the problem of scheduling n jobs on m machines in an open shop environment so that the sum of completion times or mean flow time becomes minimal. It continues recent work by Bräsel et al. [H. Bräsel, A. Herms, M. Mörig, T. Tautenhahn, T. Tusch, F. Werner, Heuristic constructive algorithms for open shop scheduling to minmize mean flow time, European J. Oper. Res., in press (doi.10.1016/j.ejor.2007.02.057)] on constructive algorithms. For this strongly NP-hard problem, we present two iterative algorithms, namely a simulated annealing and a genetic algorithm. For the simulated annealing algorithm, several neighborhoods are suggested and tested together with the control parameters of the algorithm. For the genetic algorithm, new genetic operators are suggested based on the representation of a solution by the rank matrix describing the job and machine orders. Extensive computational results are presented for problems with up to 50 jobs and 50 machines, respectively. The algorithms are compared relative to each other, and the quality of the results is also estimated partially by a lower bound for the corresponding preemptive open shop problem. For most of the problems, the genetic algorithm is superior when fixing the same number of 30 000 generated solutions for each algorithm. However, in contrast to makespan minimization problems, where the focus is on problems with an equal number of jobs and machines, it turns out that problems with a larger number of jobs than machines are the hardest problems.  相似文献   
3.
The berth allocation problem is to allocate space along the quayside to incoming ships at a container terminal in order to minimize some objective function. We consider minimization of total costs for waiting and handling as well as earliness or tardiness of completion, for all ships. We assume ships can arrive at any given time, i.e., before or after the berths become available. The resulting problem, which subsumes several previous ones, is expressed as a linear mixed 0–1 program. As it turns out to be too time-consuming for exact solution of instances of realistic size, a Variable Neighborhood Search (VNS) heuristic is proposed, and compared with Multi-Start (MS), a Genetic Search algorithm (GA) and a Memetic Search algorithm (MA). VNS provides optimal solutions for all instances solved to optimality in a previous paper of the first two authors and outperforms MS, MA and GA on large instances.  相似文献   
4.
The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals with two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers (backhaul) that send goods to the depot. In this paper, we propose a simple yet effective iterated local search algorithm for the VRPB. Its main component is an oscillating local search heuristic that has two main features. First, it explores a broad neighborhood structure at each iteration. This is efficiently done using a data structure that stores information about the set of neighboring solutions. Second, the heuristic performs constant transitions between feasible and infeasible portions of the solution space. These transitions are regulated by a dynamic adjustment of the penalty applied to infeasible solutions. An extensive statistical analysis was carried out in order to identify the most important components of the algorithm and to properly tune the values of their parameters. The results of the computational experiments carried out show that this algorithm is very competitive in comparison to the best metaheuristic algorithms for the VRPB. Additionally, new best solutions have been found for two instances in one of the benchmark sets. These results show that the performance of existing metaheuristic algorithms can be considerably improved by carrying out a thorough statistical analysis of their components. In particular, it shows that by expanding the exploration area and improving the efficiency of the local search heuristic, it is possible to develop simpler and faster metaheuristic algorithms without compromising the quality of the solutions obtained.  相似文献   
5.
This paper presents a parameter adaptive harmony search algorithm (PAHS) for solving optimization problems. The two important parameters of harmony search algorithm namely Harmony Memory Consideration Rate (HMCR) and Pitch Adjusting Rate (PAR), which were either kept constant or the PAR value was dynamically changed while still keeping HMCR fixed, as observed from literature, are both being allowed to change dynamically in this proposed PAHS. This change in the parameters has been done to get the global optimal solution. Four different cases of linear and exponential changes have been explored. The change has been allowed during the process of improvization. The proposed algorithm is evaluated on 15 standard benchmark functions of various characteristics. Its performance is investigated and compared with three existing harmony search algorithms. Experimental results reveal that proposed algorithm outperforms the existing approaches when applied to 15 benchmark functions. The effects of scalability, noise, and harmony memory size have also been investigated on four approaches of HS. The proposed algorithm is also employed for data clustering. Five real life datasets selected from UCI machine learning repository are used. The results show that, for data clustering, the proposed algorithm achieved results better than other algorithms.  相似文献   
6.
This paper considers a coordinated scheduling problem. For the first-stage transportation there is a crane available to transport the product from the warehouse to a batching machine. For the second-stage transportation there is a vehicle available to deliver the completed jobs from the machine shop floor to the customer. The coordinated scheduling problem of production and transportation deals with sequencing the transportation of the jobs and combining them into batches to be processed. The problem of minimizing the sum of the makespan and the total setup cost was proven by Tang and Gong [1] to be strongly NP-hard. This paper proposes two genetic algorithm (GA) approaches for this scheduling problem, with different result representations. The experimental results demonstrate that a regular GA and a modified GA (MGA) can find near-optimal solutions within an acceptable amount of computational time. Among the two proposed metaheuristic approaches, the MGA is superior to the GA both in terms of computing time and the quality of the solution.  相似文献   
7.
Large part of combinatorial optimization research has been devoted to the study of exact methods leading to a number of very diversified solution approaches. Some of those older frameworks can now be revisited in a metaheuristic perspective, as they are quite general frameworks for dealing with optimization problems. In this work, we propose to investigate the possibility of reinterpreting decompositions, with special emphasis on the related Benders and Lagrangean relaxation techniques. We show how these techniques, whose heuristic effectiveness is already testified by a wide literature, can be framed as a “master process that guides and modifies the operations of subordinate heuristics”, i.e., as metaheuristics. Obvious advantages arise from these approaches, first of all the runtime evolution of both upper and lower bounds to the optimal solution cost, thus yielding both a high-quality heuristic solution and a runtime quality certificate of that same solution.  相似文献   
8.
An implementation of Central Force Optimization (CFO) utilizing variable initial probes and decision space adaptation is presented. The algorithm is tested against a suite of benchmark functions and CFO’s results compared to those of other algorithms. CFO performs well against the benchmarks, and also in scalability tests in 300-dimensions.  相似文献   
9.
In this paper we present a heuristic algorithm based on the formulation space search method to solve the circle packing problem. The circle packing problem is the problem of finding the maximum radius of a specified number of identical circles that can be fitted, without overlaps, into a two-dimensional container of fixed size. In this paper we consider a variety of containers: the unit circle, unit square, rectangle, isosceles right-angled triangle and semicircle. The problem is formulated as a nonlinear optimization problem involving both Cartesian and polar coordinate systems.Formulation space search consists of switching between different formulations of the same problem, each formulation potentially having different properties in terms of nonlinear optimization. As a component of our heuristic we solve a nonlinear optimization problem using the solver SNOPT.Our heuristic improves on previous results based on formulation space search presented in the literature. For a number of the containers we improve on the best result previously known. Our heuristic is also a computationally effective approach (when balancing quality of result obtained against computation time required) when compared with other work presented in the literature.  相似文献   
10.
The train formation plan (TFP) determines routing and frequency of trains, and assigns the demands to trains. In this paper, an improved local branching algorithm is proposed for the TFP model in Iranian railway. This solution strategy is exact in nature, although it is designed to improve the heuristic behavior of the mixed integer programming (MIP) solver at hand. In the local branching algorithm, additional constraints are built in the model for the binary variables, but in the improved local branching algorithm, the additional constraints are built in the model for integer variables. A state-of-the-art method is applied for parameter tuning using design of experiments approach. To evaluate the proposed solution method, we have simulated and solved twenty test problems. The results show the efficiency and effectiveness of the proposed approach. The proposed algorithm is implemented for Iranian Railway network as a case study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号