首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
数学   40篇
物理学   1篇
  2021年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 46 毫秒
1.
In this paper, we study the behavior of a discrete-time multiserver buffer system with infinite buffer size. Packets arrive at the system according to a two-state Markovian arrival process. The service times of the packets are assumed to be constant, equal to multiple slots. The behavior of the system is analyzed by means of an analytical technique based on probability generating functions (PGF’s). Explicit expressions are obtained for the PGF’s of the system contents and the packet delay. From these, the mean values, the variances and the tail distributions of the system contents and the packet delay are calculated. Numerical examples are given to show the influence of various model parameters on the system behavior.  相似文献   
2.
In this article, we show that the arguments in Rykov [9] on the optimality of a threshold routing policy when there are more than two heterogeneous servers are incomplete. AMS Subject Classifications: 93E20, 60K25, 90B22  相似文献   
3.
For a tandem line of finite, single-server queues operating under the production blocking mechanism, we study the effects of pooling several adjacent stations and the associated servers into a single station with a single team of servers. We assume that the servers are cross-trained (so that they can work at several different stations) and that two or more servers can cooperate on the same job. For such a system, we provide sufficient conditions on the service times and sizes of the input and output buffers at the pooled station under which pooling will decrease the departure time of each job from the system (and hence increase the system throughput). We also show that pooling decreases the total number of jobs in the system at any given time and the sojourn time of each job in the system if the departure time of each job from the system is decreased by pooling and there is an arrival stream at the first station. Moreover, we provide sufficient conditions under which pooling will improve the holding cost of each job in the system incurred before any given time, and extend our results to closed tandem lines and to queueing networks with either a more general blocking mechanism or probabilistic routing. Finally, we present a numerical study aimed at quantifying the improvements in system performance obtained through pooling and at understanding which stations should be pooled to achieve the maximum benefit. Our results suggest that the improvements gained by pooling may be substantial and that the bottleneck station should be among the pooled stations in order to obtain the greatest benefit. AMS subject classification: 90B22  相似文献   
4.
Motivated by current communication networks in which users can choose different transmission channels to operate and also by the recent growth of renewable energy sources, we study the average Age of Information of a status update system that is formed by two parallel homogeneous servers and such that there is an energy source that feeds the system following a random process. An update, after getting service, is delivered to the monitor if there is energy in a battery. However, if the battery is empty, the status update is lost. We allow preemption of updates in service and we assume Poisson generation times of status updates and exponential service times. We show that the average Age of Information can be characterized by solving a system with eight linear equations. Then, we show that, when the arrival rate to both servers is large, the average Age of Information is one divided by the sum of the service rates of the servers. We also perform a numerical analysis to compare the performance of our model with that of a single server with energy harvesting and to study in detail the aforementioned convergence result.  相似文献   
5.
This paper considers a simple discrete-time queueing model with two types (classes) of customers (types 1 and 2) each having their own dedicated server (servers A and B resp.). New customers enter the system according to a general independent arrival process, i.e., the total numbers of arrivals during consecutive time slots are i.i.d. random variables with arbitrary distribution. Service times are deterministically equal to 1 slot each. The system uses a “global FCFS” service discipline, i.e., all arriving customers are accommodated in one single FCFS queue, regardless of their types. As a consequence of the “global FCFS” rule, customers of one type may be blocked by customers of the other type, in that they may be unable to reach their dedicated server even at times when this server is idle, i.e., the system is basically non-workconserving. One major aim of the paper is to estimate the negative impact of this phenomenon on the queueing performance of the system, in terms of the achievable throughput, the system occupancy, the idle probability of each server and the delay. As it is clear that customers of different types hinder each other more as they tend to arrive in the system more clustered according to class, the degree of “class clustering” in the arrival process is explicitly modeled in the paper and its very direct impact on the performance measures is revealed. The motivation of our work are systems where this kind of blocking is encountered, such as input-queueing network switches or road splits.  相似文献   
6.
S. C. Borst 《Queueing Systems》1995,20(3-4):369-393
We consider polling systems with multiple coupled servers. We explore the class of systems that allow an exact analysis. For these systems we present distributional results for the waiting time, the marginal queue length, and the joint queue length at polling epochs. The class in question includes several single-queue systems with a varying number of servers, two-queue two-server systems with exhaustive service and exponential service times, as well as infinite-server systems with an arbitrary number of queues, exhaustive or gated service, and deterministic service times.  相似文献   
7.
We consider a multi-queue multi-server system with n servers (processors) and m queues. At the system there arrives a stationary and ergodic stream of m different types of requests with service requirements which are served according to the following k-limited head of the line processor sharing discipline: The first k requests at the head of the m queues are served in processor sharing by the n processors, where each request may receive at most the capacity of one processor. By means of sample path analysis and Loynes’ monotonicity method, a stationary and ergodic state process is constructed, and a necessary as well as a sufficient condition for the stability of the m separate queues are given, which are tight within the class of all stationary ergodic inputs. These conditions lead to tight necessary and sufficient conditions for the whole system, also in case of permanent customers, generalizing an earlier result by the authors for the case of n=k=1. This work was supported by a grant from the Siemens AG.  相似文献   
8.
This paper deals with a multi-server, finite-capacity queuing system with recurrent input and no waiting line. The interarrival times are arbitrarily distributed whereas service times are exponentially distributed. Moreover, the servers are heterogeneous and independent of each other. Arriving customers choose the server with the lowest index number among the empty servers. When all servers are busy at a time of an arrival, that arrival must leave the system without being served. The semi-Markov process method is used to describe this model and embedded Markov chain of the process is obtained. Furthermore, the Laplace–Stieltjes transform of the distribution of interoverflow times is derived which is the main objective of the paper. Finally, it is offered a new formulation for the loss probability which provides more efficient and rapid calculation is proposed.  相似文献   
9.
本文讨论具有阻碍、放弃,不同服务员Kk/M/2/N排队系统的解析解.对经典的一种先入先出的修改排队规则在较一般的条件下被采用了,得到了稳态概率和一些有效度量的显式.一些特殊情况也被化简了。  相似文献   
10.
Recently, [1] have obtained the transient solution of multi-server queue with balking and reneging. In this paper, a similar technique is used to drive a new elegant explicit solution for a two heterogeneous servers queue with impatient behavior. In addition, steady-state probabilities of the system size are studied and some important performance measures are discussed for the considered system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号