首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
  国内免费   1篇
化学   3篇
力学   72篇
数学   5篇
物理学   7篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2012年   1篇
  2011年   10篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2006年   11篇
  2005年   8篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba–Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions for the stress tensor.  相似文献   
2.
Constitutive equations are derived for the viscoplastic behavior of a host medium driven by diffusion of guest atoms. With reference to the trapping concept, two states of a guest atom are distinguished: mobile and immobilized (due to alloying with the host matrix). This allows propagation of a sharp interphase to be described between regions rich and poor in guest atoms. The model is applied to study the mechanical response of a spherical electrode particle in a Li-ion battery. Ability of the constitutive equations to capture basic phenomena observed in anode particles under lithiation is demonstrated by numerical simulation.  相似文献   
3.
Recent experiments in the literature show that micro/nano-scale features imprinted in a Pt-based metallic glass, Pt57.5Ni5.3Cu14.7P22.5, using thermoplastic forming at a temperature above its glass transition temperature, may be erased by subsequent annealing at a slightly higher temperature in the supercooled liquid region (Kumar and Schroers, 2008). The mechanism of shape-recovery is believed to be surface tension-driven viscous flow of the metallic glass. We have developed an elastic-viscoplastic constitutive theory for metallic glasses in the supercooled liquid temperature range at low strain rates, and we have used existing experimental data in the literature for Pt57.5Ni5.3Cu14.7P22.5 (Harmon et al., 2007) to estimate the material parameters appearing in our constitutive equations. We have implemented our constitutive model for the bulk response of the glass in a finite element program, and we have also developed a numerical scheme for calculating surface curvatures and incorporating surface tension effects in finite element simulations. By carrying out full three-dimensional finite-element simulations of the shape-recovery experiments of Kumar and Schroers (2008), and using the independently determined material parameters for the bulk glass, we estimate the surface tension of Pt57.5Ni5.3Cu14.7P22.5 at the temperature at which the shape-recovery experiments were conducted. Finally, with the material parameters for the underlying elastic-viscoplastic bulk response as well as a value for the surface tension of the Pt-based metallic glass fixed, we validate our simulation capability by comparing predictions from our numerical simulations of shape-recovery experiments of Berkovich nanoindents, against corresponding recent experimental results of Packard et al. (2009) who reported shape-recovery data of nanoindents on the same Pt-based metallic glass.  相似文献   
4.
In the present work, the evolution of the inelastic centre deflections of shock wave-loaded circular metal plates due to repeated loadings is studied experimentally and numerically. These displacements are compared to those of quasi-statically deformed plates loaded by a pressure equal to the peak pressure of the impulsive loading. Thereby three types of permanent centre deflections are observed: (1) The quasi-statically obtained deflection is exceeded by the middle point displacement of a dynamically loaded structure already after the first impulse and tends towards a limit state after repeated shock wave-loadings. (2) The centre deflection of the impulsively loaded plate exceeds also the quasi-statically caused deflection and does not increase after repeated impulsive loadings any more. (3) The permanent middle point displacement of a dynamically loaded plate is smaller than the deflection of a quasi-statically loaded one and tends towards the middle point displacement of the quasi-static counterpart after repeated shock wave loadings. This phenomenon is known in the literature as ‘Pseudo-shakedown’.

In Part 1 of this study the experimental observation is described, followed by a theoretical study in Part 2.  相似文献   

5.
粘塑性损伤模型模拟准超塑性单轴拉伸行为   总被引:1,自引:0,他引:1  
发展了Chaboche粘塑性本构模型的大变形隐式算法,用损伤(DM)和无损伤(NDM)模型模拟准超塑性单轴拉伸。发现变形过程可分为三个阶段:均匀变形、颈缩发展、断裂破坏阶段。DM可准确模拟前两个阶段变形,NDM只能较好地模拟均匀变形阶段,表明DM可以较精确地描述稳定发展的动态过程。由于有限元方法只能描述连续介质,因此对于断裂破坏阶段,NDM模拟载荷大于试验结果,DM的载荷小于试验结果,这是由高应变速率敏感性造成。DM能够描述试验中出现地多处颈缩现象,局部应变速率分布随时间演化反映了颈缩发展程度。严重颈缩部位的距离代表着超塑性变形能力,距离越大,抗颈缩能力越好。  相似文献   
6.
7.
Optimal control theory is used to study the asymptotic behaviour of elasto-viscoplastic structures under cyclic loading. With this approach, the asymptotic state is found as the solution of a minimization problem. General properties of this method are established. A simple thermomechanical problem is studied to illustrate and validate this approach. An interest of the proposed method lies in its capacity to handle other nonlinearities than plasticity. To illustrate this point, the approach is extended to the coupled viscoplasticity/frictionless contact problem. Some numerical results are given for an elasto-viscoplastic half-plane under cyclic frictionless indentation.  相似文献   
8.
The determination of the parameters of viscoplastic fluids subject to wall slip is a special challenge and accurate results are generally obtained only when a number of viscometers are utilized concomitantly. Here the characterization of the parameters of the Herschel-Bulkley fluid and its non-linear wall slip behavior is formulated as an inverse problem which utilizes the data emanating from capillary and squeeze flow rheometers. A finite element method of the squeeze flow problem is employed in conjunction with the analytical solution of the capillary data collected following Mooneys procedure, which uses dies with differing surface to volume ratios. The uniqueness of the solution is recognized as a major problem which limits the accuracy of the solution, suggesting that the search methodology should be carefully selected.  相似文献   
9.
A three-dimensional, finite-deformation-based constitutive model to describe the behavior of metallic glasses in the supercooled liquid region has been developed. By formulating the theory using the principles of thermodynamics and the concept of micro-force balance [Gurtin, M., 2000. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989-1036], a kinetic equation for the free volume concentration is derived by augmenting the Helmholtz free energy used for a conventional metallic alloy with a flow-defect free energy which depends on the free volume concentration and its spatial gradient. The developed constitutive model has also been implemented in the commercially available finite-element program ABAQUS/Explicit (2005) by writing a user-material subroutine. The constitutive parameters/functions in the model were calibrated by fitting the constitutive model to the experimental simple compression stress-strain curves conducted under a variety of strain-rates at a temperature in the supercooled liquid region [Lu, J., Ravichandran, G., Johnson, W., 2003. Deformation behavior of the Zr-Ti-Cu-Ni-Be bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429-3443].With the model calibrated, the constitutive model was able to reproduce the simple compression stress-strain curves for jump-in-strain-rate experiments to good accuracy. Furthermore stress-strain responses for simple compression experiments conducted at different ambient temperatures within the supercooled liquid region were also accurately reproduced by the constitutive model. Finally, shear localization studies also show that the constitutive model can reasonably well predict the orientation of shear bands for compression experiments conducted at temperatures within the supercooled liquid region [Wang, G., Shen, J., Sun, J., Lu, Z., Stachurski, Z., Zhou, B., 2005. Compressive fracture characteristics of a Zr-based bulk metallic glass at high test temperatures. Mater. Sci. Eng. A 398, 82-87].  相似文献   
10.
This study develops a finite-deformation, Coulomb-Mohr type constitutive theory for the elastic-viscoplastic response of pressure-sensitive and plastically-dilatant isotropic materials. The constitutive model has been implemented in a finite element program, and the numerical capability is used to study the deformation response of amorphous metallic glasses. Specifically, the response of an amorphous metallic glass in tension, compression, strip-bending, and indentation is studied, and it is shown that results from the numerical simulations qualitatively capture major features of corresponding results from physical experiments available in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号