首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   50篇
  国内免费   25篇
化学   24篇
力学   567篇
综合类   1篇
数学   61篇
物理学   392篇
  2023年   4篇
  2022年   6篇
  2021年   35篇
  2020年   33篇
  2019年   23篇
  2018年   10篇
  2017年   23篇
  2016年   27篇
  2015年   34篇
  2014年   43篇
  2013年   99篇
  2012年   28篇
  2011年   72篇
  2010年   42篇
  2009年   89篇
  2008年   48篇
  2007年   67篇
  2006年   35篇
  2005年   55篇
  2004年   27篇
  2003年   19篇
  2002年   34篇
  2001年   9篇
  2000年   17篇
  1999年   18篇
  1998年   22篇
  1997年   11篇
  1996年   12篇
  1995年   5篇
  1994年   9篇
  1993年   21篇
  1992年   15篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1045条查询结果,搜索用时 156 毫秒
1.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   
2.
 从推广的惠更斯-菲涅尔原理出发,推导出了部分相干电磁光束的偏振态在湍流介质中传输的表达式。并以电磁高斯-谢尔模型(EGSM)光束为例,研究了湍流对电磁高斯-谢尔模型光束偏振态的影响。研究结果表明,对于轴上点,湍流介质的折射率结构常数越大,偏振度趋于最大值的速度越快,达到的最大值越小;光斑越大,偏振度达到最大值的位置离光源越远,在光斑增大的过程中,偏振度所达到的极大值会先增大后减小,最后保持与光源相同的偏振度不变。对于轴外点,一个固定的z,光的偏振度随着离轴距离的增大而逐渐下降,并最终等于零。折射率结构常数越大,偏振度随离轴距离的增大而下降得越缓慢;光斑越大,偏振度随离轴距离的增大下降得越快。  相似文献   
3.
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
4.
We generalize an analogy between rotating and stratified shear flows. This analogy is summarized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection) to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-dimensional torque G = T2 L, where L is the cylinder length, scales with Reynolds number R and gap width η, G = 1.46η3/2(1 - η)-7/4 R 3/2. At larger Reynolds number, velocity fluctuations become non-negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes: G = 0.50 . These predictions are found to be in excellent agreement with avail-able experimental data. Predictions for scaling of velocity fluctuations are also provided. Received 7 June 2001 and Received in final form 7 December 2001  相似文献   
5.
Based on the extended Huygens-Fresnel principle, the spectrum of Gaussian Schell-model (GSM) beams propagating through turbulent atmosphere is derived analytically. It is shown that, if the scaling law is valid, the normalized spectrum S(ω) of GSM beams propagating through turbulent atmosphere is the same as the normalized source spectrum S(0)(ω), whether GSM source is quasi-homogenous or not. On the other hand, if the scaling law fails, S(ω) of GSM is different from S(0)(ω). The structure constant of the refractive index, transverse coordinate of observation point and spatial correlation length of the source affect the spectrum, which is illustrated numerically.  相似文献   
6.
1引言分离流动经常出现在许多实际流动中,对流体机械和飞行器产生重大影响。但由于这种流动具有方向性,变化快,给测量带来了困难。到目前为止,主要有以下三种测量方法:山激光多普勒测速治(*D川;(2)飞行热线(F坊In含*。卜w让e);O)脉冲热线技术(PulsedAVire。‘脉冲热线”比“激光多普勒测速仪”价格低一个数量级,操作简单,是一种比较理想的测量技术。其原理最初由Baner山提出,随后经过BradburyP],Eaton问,Castro*和Fernholz问等人不断发展与完善,目前国外正推广应用在分离流动的研究中。但在国内,尚不多见其…  相似文献   
7.
本文导出了考虑外场和束流效应后束流均方根发射度平方变化方程的一般表达式,并就仅考虑外场,仅考虑空间电荷场和仅考虑尾场等三种特殊情况进行了分析。  相似文献   
8.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
The aim of this paper is to present several features of the couplings occurring between radiative transfer and the kinetics of a moving dielectric. After determining how the velocity field affects the apparent thermo-optical properties of matter, the energy transport problem is investigated in instationary regime and the general form of transient radiative transfer equation inside a moving medium is built. Then, the model is applied to the particular case of turbulent flows: a system of two equations for mean and fluctuating radiative energies is presented, and the resolution of this system is finally carried out.  相似文献   
10.
The inertial range for a statistical turbulent velocity field consists of those scales that are larger than the dissipation scale but smaller than the integral scale. Here the complete scale-invariant explicit inertial range renormalization theory for all the higher-order statistics of a diffusing passive scalar is developed in a model which, despite its simplicity, involves turbulent diffusion by statistical velocity fields with arbitrarily many scales, infrared divergence, long-range spatial correlations, and rapid fluctuations in time-such velocity fields retain several characteristic features of those in fully developed turbulence. The main tool in the development of this explicit renormalization theory for the model is an exact quantum mechanical analogy which relates higher-order statistics of the diffusing scalar to the properties of solutions of a family ofN- body parabolic quantum problems. The canonical inertial range renormalized statistical fixed point is developed explicitly here as a function of the velocity spectral parameter, which measures the strength of the infrared divergence: for<2, mean-field behavior in the inertial range occurs with Gaussian statistical behavior for the scalar and standard diffusive scaling laws; for>2 a phase transition occurs to a fixed point with anomalous inertial range scaling laws and a non-Gaussian renormalized statistical fixed point. Several explicit connections between the renormalization theory in the model and intermediate asymptotics are developed explicitly as well as links between anomalous turbulent decay and explicit spectral properties of Schrödinger operators. The differences between this inertial range renormalization theory and the earlier theories for large-scale eddy diffusivity developed by Avellaneda and the author in such models are also discussed here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号