首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
力学   7篇
物理学   6篇
  2019年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Two-dimensional autocorrelation function analysis of smoked foil patterns   总被引:1,自引:0,他引:1  
Digital image processing techniques have been applied to the analysis of cellular smoked foil patterns from gaseous detonations. In particular, the two-dimensional autocorrelation function is applied to digital cell pattern images and an orientational correlation parameter is calculated. Taking line profiles along the directions of highest correlation provides an unbiased method of determining the mean cell size in each of the two principal directions. By analyzing the width, amplitude and angular position of the orientational correlation plots, information can be extracted concerning the cellular pattern regularity, the relative angular correlation between two sets of transverse waves in two directions, and the mean shape or elongation of the cells within the pattern. The technique is applied to smoked foils from oxyacetylene mixtures with argon dilutions ranging from 0 to 75% to quantify the increase in regularity with argon dilution. This method provides a simple and useful way of analyzing cellular patterns and constitutes a promising technique for improving smoked foil diagnostics.  相似文献   
2.
A general normal-mode linear stability formulation of steady planar detonation waves is presented that is valid both for an arbitrary equation of state and for multi-step, multi-species chemical kinetics. The general formulation can be used for many purposes, including an examination of gaseous detonation stability with complex reaction kinetics in which the individual reacting species have variable thermochemical properties. In the present paper, we consider two cases that could not be obtained by previous one-step chemistry, polytropic gas formulations: the first concerns the effect of a difference in heat capacities between product and fuel species, as well as a possible mole change, in a single-step irreversible reaction. The second examines the effects of exothermic or endothermic heat release/absorption in the chain-initiation stage of a model three-step reaction.  相似文献   
3.
Experiments have been carried out to determine the dependence of the detonation velocity in porous media, on mixture sensitivity and pore size. A detonation is established at the top end of a vertical tube and allowed to propagate to the bottom section housing the porous bed, comprised of alumina spheres of equal diameter (1–32 mm). Several of the common detonable fuels were tested at atmospheric initial pressure. Results indicate the existence of a continuous range of velocities with change in Φ, spanning the lean and the rich propagation limits. For all fuels in a given porous bed, the velocity decreases from a maximum value at the most sensitive mixture near Φ≈1 (minimum induction length), toV/V CJ≈0.3 at the limits. A decrease in pore size brings about a reduction inV/V CJ and a narrowing of the detonability range for each fuel. For porous media comprised of spherical particles, it was possible to correlate the velocity data corresponding to a variety of different mixtures and for a broad range of particle sizes, using the following empirical expression:V/V CJ=[1–0.35 log(d c /d p)]±0.1. The critical tube diameterd c is used as a measure of mixture sensitivity andd p denotes the pore diameter. An examination of the phenomenon at the composition limits, suggests that wave failure is controlled by a turbulent quenching mechanism.  相似文献   
4.
We provide the first theoretical demonstration of the existence of quasi-one-dimensional, quasi-steady, self-sustaining convergent detonation waves. These occur in systems where, in the planar wave, the rate of heat release by chemical reaction reaches a maximum at a point of incomplete reaction. The case examined in the present paper is that for a two-step sequential reaction, with the second stage endothermic. We construct detonation velocity against curvature relationships for converging waves, and compare these theoretical curves with direct numerical simulations of imploding detonations in cylindrical and spherical geometries. We also comment on the one-dimensional stability of imploding and diverging detonation fronts governed by the two-step model.  相似文献   
5.
The structure of detonation waves propagating through the annular channel of an optically accessible non-premixed rotating detonation engine (RDE) are investigated using mid-infrared imaging. The RDE is operated on hydrogen–air mixtures for a range of air mass flow rates and equivalence ratios. Instantaneous images of the radiation intensity from water vapor are acquired using a mid-infrared camera and a band-pass filter (2.890?±?0.033?µm). The instantaneous mid-infrared images reveal the stochastic nature of the detonation wave structure, position and angle of oblique and reflected shock waves, presence of shear layer separating products from the previous and current cycles, and extent of mixing between the reactants and products in the reactant fill zone in front of the detonation wave. The images show negligible signal directly in front of the detonation waves suggesting that there is minimal mixing between the reactants and products from the previous cycle ahead of the detonation wave for most operating conditions. The mid-infrared images provide insights useful for improving fundamental understanding of the detonation structure in RDEs and benchmark data for evaluating modeling and simulation results of RDEs.  相似文献   
6.
This paper summarizes the studies of DDT and stable detonation waves in dust-air mixtures at the Stosswellenlabor of RWTH Aachen. The DDT process and propagation mechanism for stable heterogeneous dust detonations in air are essentially the same as in the oxygen environment studied previously. The dust DDT process in tubes is composed of a reaction compression stage followed by a reaction shock stage as the pre-detonation process. The transverse waves that couple the shock wave and the chemical energy release are responsible for the propagation of a stable dust-air detonation. However, the transverse wave spacing of dust-air mixtures is much larger. Therefore, DDT and propagation of a stable detonation in most industrial and agricultural, combustible dust-air mixtures require a tube that has a large diameter between 0.1 m and 1 m and a sufficient length-diameter ratio beyond 100, when an appropriately strong initiation energy is used. Two dust detonation tubes, 0.14 m and 0.3 m in diameter, were used for observation of the above-mentioned results in cornstarch, anthraquinone and aluminum dust suspended in air. Smoked-foil technique was also used to measure the cellular structure of dust detonations in the 0.3 m detonation tube. Received 11 February 2000 / Accepted 1 August 2000  相似文献   
7.
The problem of detonation initiation is studied in the case of hybrid two-phase mixtures consisting of a hydrogen-air gaseous mixture with suspended fine aluminium particles. In preceding works on this subject, investigation of the steady propagation regimes has shown that three main propagation regimes could exist: the Pseudo-Gas Detonation (PGD), the Single-Front Detonation (SFD), and the Double-Front Detonation (DFD). In the present study, a one-dimensional unsteady numerical code has been improved to study the build-up of the detonation in a heterogeneous solid particle gas mixture contained in a tube. The initiation is simulated by the deposition of a given energy in a point source explosion, and the formation of the detonation is observed over distances of 15 m to 30 m. As the code has been designed to run on a micro-computer, memory limitations preclude sufficient accuracy for quantitative results, however, good qualitative agreement has been found with the results of the steady analysis. In addition, it has been demonstrated that when both PGD and SFD could exist at the same particle concentration, the PGD regime was unstable and was able to exist only over a limited distance (a few meters): after some time, the reaction of aluminium particles in the unsteady flow perturbs the leading wave and accelerates it to the SFD regime. Influence of particle diameter and of initiation energy are examined.  相似文献   
8.
This paper summarizes the studies on dust detonations at the Stosswellenlabor of RWTH Aachen since 1987. The onset and propagation mechanism of heterogeneous dust detonations are similar to those of marginal gas phase detonations. A self-sustained dust detonation has transverse wave structures that provide the coupling between shock and reaction. Large transition distances and transverse wave spacings require large sized tubes for the propagation of self-sustained dust detonations. The Hugoniot analysis of the Chapman-Jouguet detonation predicts equilibrium detonation states being in reasonable agreement with the self-sustained dust detonations observed. Shock matching calculations at the triple point adequately determine the wave structures of those stable dust detonations.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   
9.
There are three main astrophysical combustion systems: the evolution of stars, formation of interstellar dust and particulates, and the transition to hadrons in the early universe. These are described in terms of general combustion concepts, such as ignition, laminar and turbulent flames, detonations, multiphase flows, and particle and soot formation. Viewed in this way, the universe and many of its most important astronomical components are combustion systems, and we should use these as naturally occurring laboratories for exploring new and familiar combustion regimes. A more detailed discussion focuses on one type of combustion system, the ignition and development of turbulent flames in Type Ia supernovae, and the importance of the transition to a detonation.  相似文献   
10.
An unsteady three-dimensional simulation is performed for a hydrogen/air C–J detonation in a rectangular tube, where a detailed chemical reaction model is used to reveal the C–J detonation structure. In this simulation, detailed propagating detonation structures for a diagonal mode are described in three-dimensions. The detonation front structures, the line of triple points, and the strong explosions at the corners of the rectangular tube are revealed by using a three-dimensional numerical visualization. From the spatial isosurface profiles of H2 mass fraction, it is confirmed that the triple point lines have a role of “shutter” to generate unburned gas pockets and become of a ring shape behind the detonation front due to its explosion. The explosion process and its influence on an induction delay are observed by visualizing the spatial isosurface profiles of OH mass fraction. Moreover, a high “peninsula-shaped” OH mass fraction area, which has been experimentally reported, is reproduced on the side wall of the rectangular tube.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号