首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  国内免费   1篇
化学   15篇
物理学   9篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   11篇
  2013年   5篇
  2012年   1篇
排序方式: 共有24条查询结果,搜索用时 62 毫秒
1.
Thorium and its compounds have been widely investigated as important nuclear materials. Previous research focused on the potential use of thorium hydrides, such as ThH2, ThH4, and Th4H15, as nuclear fuels. Here, we report studies of the anion, ThH5, by anion photoelectron spectroscopy and computations. The resulting experimental and theoretical vertical detachment energies (VDE) for ThH5 are 4.09 eV and 4.11 eV, respectively. These values and the agreement between theory and experiment facilitated the characterization of the structure of the ThH5 anion and showed its neutral counterpart, ThH5 to be a superhalogen. ThH5, which exhibits a C4v structure with five Th−H single bonds, possesses the largest known H/M ratio among the actinide elements, M. The adaptive natural density partitioning (AdNDP) method was used to further analyze the chemical bonding of ThH5 and to confirm the existence of five Th−H single bonds in the ThH5 molecular anion.  相似文献   
2.
3.
In present investigation, the interactions of iridium (Ir) atom with fluorine (F) atoms have been studied using the density functional theory. Up to seven F atoms were able to bind to a single Ir atom which resulted in increase of electron affinities successively, reaching a peak value of 7.85 eV for IrF7. The stability and reactivity of these clusters were analyzed by calculating highest occupied molecular orbital (HOMO)–LUMO gaps, molecular orbitals and binding energies of these clusters. The unusual properties of these clusters are due to the involvement of inner shell 5d‐electrons, which not only allows IrFn clusters to belong to the class of superhalogens but also shows that its valence can exceed the nominal value of 2. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
Density functional calculations on the ground state geometries and stabilities of PdOn species (n = 1–5) are performed in neutral as well as anionic forms. Calculations reveal that Pd can bind stably with four O atoms indicating the maximum oxidation state of Pd as high as +8. The electron affinities of PdOn suggest that these species behave as superhalogens for n ≥ 2. The large electron affinities of PdOn species along with stability of their anions point toward the synthesis of new class of compounds having unusual oxidizing capabilities. This possibility is explored by considering the interaction of PdO2 superhalogen with Ca atom which forms a stable CaPdO2 complex. In this complex, PdO2 unit closely mimics the behavior of O atom when compared with CaO molecule. © 2013 Wiley Periodicals, Inc.  相似文献   
5.
The electron affinities of organic molecules obeying Hückel's rule of aromaticity are vanishingly small, if not negative. For example, benzene, a classic example of an aromatic molecule, has an electron affinity of −1.15 eV. Using density functional theory, we have systematically calculated the electron affinities and vertical detachment energies of C6H6 by substituting H with halogen (F) and superhalogen (BO2) moieties, as well as replacing one of the C atoms with B. The ground state geometries were obtained by examining about 330 isomers. The electron affinities are found to steadily increase with these substitutions/replacements, even surpassing that of Cl, the element with the highest electron affinity in the periodic table, in the case of C5BH(BO2)5. In some special cases such as C6H5(BO2) the electron affinity and vertical detachment energy differ by as much as 5 eV, indicating substantial changes in the geometry as the electron is removed from the anion. We hope that the ability to change the negative electron affinity of C6H6 to large positive values by substituting H and/or replacing C atom will motivate experimental studies.  相似文献   
6.
Hexasubstituted fullerenes with the skew pentagonal pyramid (SPP) addition pattern are predominantly formed in many types of reactions and represent important and versatile building blocks for supramolecular chemistry, biomedical and optoelectronic applications. Regioselective synthesis and characterization of the new SPP derivative, C60(CF3)4(CN)H, in this work led to the experimental identification of the new family of “superhalogen fullerene radicals”, species with the gas‐phase electron affinity higher than that of the most electronegative halogens, F and Cl. Low‐temperature photoelectron spectroscopy and DFT studies of different C60X5 radicals reveal a profound effect of X groups on their electron affinities (EA), which vary from 2.76 eV (X=CH3) to 4.47 eV (X=CN). The measured gas‐phase EA of the newly synthesized C60(CF3)4CN equals 4.28 (1) eV, which is about 1 eV higher than the EA of Cl atom. An observed remarkable stability of C60(CF3)4CN? in solution under ambient conditions opens new venues for design of air‐stable molecular complexes and salts for supramolecular structures of electroactive functional materials.  相似文献   
7.
This work presents the perspective of applying the laser desorption/ionization mass spectrometry (LDI MS) for characterization the anode film of the Ag60Cu26Zn14, Ag58.5Cu31.5Pd10, and Ag63Cu27In10 alloys (at high concentrations of chloride ions in solutions). The reference LDI mass spectra of anode films of pure Ag and Cu have been used for the identification of product corrosion. Knowing the clusters detected in the reference spectra lead to the facilitating identification of the LDI mass spectrum of the sample and reduces the analysis time. The LDI MS analysis of these alloys revealed that the predominant corrosion product are AgCl (from AgnCln+1?/+, n = 1–3), and CuCl (from “superhalogen” CumCln? clusters, m = 1–2, n = 2–6); it also revealed Cu2(OH)3Cl (from Cu2(OH)(H2O)2+) and Cu2O (from Cu(H2O)+, Cu2O doped with chlorine). These results are in accordance with the X-ray diffraction and Raman analysis. The LDI MS spectra of alloys contain the additional peaks formed due to the mutual influences of different metals in the alloys (AgCuCl3? (AgCl-CuCl2?), AgCu2Cl4? (AgCl-CuCl-CuCl2?), and Ag2CuCl4? (AgCl-AgCl-CuCl?), which is consistent with the identified corrosion products. It should be noted that the LDI MS suggest the presence of CuCl2, which can be interpreted as the corrosion products retained in the porous films of alloys, and not detected by the other methods due to a small amount. The future theoretical and experimental studies of metal clusters, significant for metallurgy, can contribute that the LDI MS is becoming a powerful analytical tool for characterization the metal surfaces.  相似文献   
8.
Density functional theory calculations on the ground-state geometries and spin multiplicities of neutral and anionic ferromagnetic metal fluoride clusters, MFn (M = Fe, Co and Ni; n = 1–7), have been performed. The results show that in the case of FeFn and CoFn clusters, a maximum of five F atoms can be bound atomically to metal atoms while four in the case of NiFn. The remaining F atoms bind either very weakly or molecularly. The stabilities of all MFn clusters are discussed by calculating dissociation energies to F atoms and F2 molecules. We notice that the anionic species are relatively more stable than corresponding neutrals. The electron affinities of these clusters are very large, reaching values as high as 7.98 eV. Therefore, these clusters can be regarded as superhalogens.  相似文献   
9.
A new type of superhalogen‐(super)alkali compound, BF4‐M (M = Li, FLi2, OLi3, NLi4), is theoretically characterized at the MP2/6‐311+G(3df) level. The interaction between superhalogen BF4 and different shaped (super)alkali M is found to be strong and ionic in nature. Bond energies of these BF4‐M species are in the range of 200.0–226.7 kcal/mol at the CCSD(T)/6‐311+G(3df) level, which are much larger than the traditional ionic bond energy of 130.1 kcal/mol of FLi. In addition, different from the alkali halides, the BF4‐M compounds prefer to dissociate into ions rather than neutral fragments. The energetic properties of BF4‐M are found to be closely related to the size of the M subunit. The different effects of superalkali and superhalogen subunits on the nonlinear optical (NLO) properties of such superatom compounds are also revealed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
10.
In this work, we investigate the formation of Li–X complexes by interaction of Li cation and superhalogen (X) anions belonging to s block (X = LiF2, BeF3) and p block (X = BF4, PF6). We discuss their structures and stabilities using the quantum chemical method at MP2/aug-cc-pVDZ level of theory. Considering polarisable continuum model, solvent effects are taken into account in a polar organic solvent, namely diethyl ether. Our findings establish that electronic and chemical properties of Li–LiF2 and Li–BeF3 closely resemble Li–BF4 and Li–PF6. However, Li–LiF2 may dissociate preferably into LiF salt; Li–BeF3 appears as a close analogue of Li–BF4, which is significantly stabilised by the solvent. Thus, the superhalogen anions possess electronic integrity irrespective of the nature of central atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号