首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   298篇
  国内免费   61篇
化学   1098篇
晶体学   66篇
力学   2篇
数学   22篇
物理学   759篇
  2024年   3篇
  2023年   7篇
  2022年   18篇
  2021年   34篇
  2020年   83篇
  2019年   48篇
  2018年   34篇
  2017年   43篇
  2016年   111篇
  2015年   75篇
  2014年   95篇
  2013年   162篇
  2012年   116篇
  2011年   119篇
  2010年   105篇
  2009年   115篇
  2008年   102篇
  2007年   88篇
  2006年   118篇
  2005年   52篇
  2004年   50篇
  2003年   43篇
  2002年   93篇
  2001年   46篇
  2000年   27篇
  1999年   22篇
  1998年   27篇
  1997年   16篇
  1996年   15篇
  1995年   10篇
  1994年   10篇
  1993年   7篇
  1992年   3篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   9篇
  1984年   1篇
  1983年   2篇
  1981年   5篇
  1980年   5篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1947条查询结果,搜索用时 375 毫秒
1.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
2.
We have made direct pump–probe measurements of spin lifetimes in long wavelength narrow-gap semiconductors at wavelengths between 4 and 10 μm and from 4 to 300 K. In particular, we measure remarkably long spin lifetimes, τs300 ps, even at 300 K for epilayers of degenerate n-type InSb. In this material the mobility is approximately constant between 77 and 300 K, and we find that τs is approximately constant in this temperature range. In order to determine the dominant spin relaxation mechanism we have investigated the temperature dependence of τs in non-degenerate lightly n-type Hg0.78Cd0.22Te of approximately the same band gap as InSb, and find that τs varies from 356 ps at 150 K to 24 ps at 300 K. Our results, both in magnitude and temperature dependence of τs, imply that the Elliott–Yafet model dominates in these materials.  相似文献   
3.
We have used two-color time-resolved magneto-optical Kerr effect spectroscopy to manipulate and detect dynamic processes of spin/magnetic order in a ferromagnetic semiconductor InMnAs. We observed ultrafast photo-induced “softening” (i.e., transient decrease of coercivity) due to spin-polarized transient carriers. This transient softening persists only during the carrier lifetime (2 ps) and returns to its original value as soon as the carriers recombine to disappear. Our data clearly demonstrates that magnetic properties, e.g., coercivity, can be strongly and reversibly modified in an ultrafast manner. We attribute the origin of this unusual phenomenon to carrier-mediated ferromagnetic exchange interactions between Mn ions. We discuss the dependence of data on the pump polarization, pump intensity, and sample temperature. Our observation opens up new possibilities for ultrafast optical manipulation of ferromagnetic order as well as providing a new avenue for studying the dynamics of long-range collective order in strongly correlated many-body systems.  相似文献   
4.
An all-optical approach to convert terahertz radiation (THz, wavelength λ1) into infrared (IR, peak wavelength λ2) is presented. We show that this up-conversion process is due to the photon drag effect induced by the THz radiation in intrinsic narrow-gap semiconductors followed by spatial redistribution of current carriers and band-to-band radiative recombination. The process results in non-selective high-speed (ns range rise/fall times) IR imaging of positive (conventional luminescence) and/or negative (negative luminescence) contrasts. Estimates made for an InSb pixelless converter at 300 K and moderate THz intensity (kW/cm2) show that this up-conversion process (with λ12>102) can be observed with a conventional thermal imaging camera.  相似文献   
5.
We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature.  相似文献   
6.
We have carried out an ultrafast time-resolved differential reflectivity study of a ferromagnetic semiconductor InGaMnAs and made a systematic comparison with low-temperature grown and high-temperature grown InGaAs reference films. Very short carrier lifetimes (2 ps) were observed in InGaMnAs and the low-temperature grown InGaAs film, but not in the high-temperature grown InGaAs film. We attribute the short lifetimes to carrier trapping by mid-gap states introduced during low-temperature MBE growth. Furthermore, at long times, we observed periodic oscillations in the differential reflectivity signal with period 20 ps, which we interpret as coherent acoustic phonons.  相似文献   
7.
An individual Mn acceptor in GaAs is mapped by cross-sectional scanning tunneling microscopy (X-STM) at room temperature and a strongly anisotropic shape of the acceptor state is observed. An acceptor state manifests itself as a cross-like feature which we attribute to a valence hole weakly bound to the Mn ion forming the (Mn2+3d5+hole) complex. We propose that the observed anisotropy of the Mn acceptor wavefunction is due to the d-wave present in the acceptor ground state.  相似文献   
8.
A multi-dimensional transient drift-diffusion model for (at most) three charged particles, consisting of the continuity equations for the concentrations of the species and the Poisson equation for the electric potential, is considered. The diffusion terms depend on the concentrations. Such a system arises in electrophoretic modeling of three species (neutrally, positively and negatively charged) and in semiconductor theory for two species (positively charged holes and negatively charged electrons). Diffusion terms of degenerate type are also possible in semiconductor modeling. For the initial boundary value problem with mixed Dirichlet - Neumann boundary conditions and general reaction rates, a global existence result is proved. Uniqueness of solutions follows in the Dirichlet boundary case if the diffusion terms are uniformly parabolic or if the initial and boundary densities are strictly positive. Finally, we prove that solutions exist which are positive uniformly in time and globally bounded if the reaction rates satisfy appropriate growth conditions.  相似文献   
9.
This is meant to be a brief overview of the developments of research activities in Japan on organometallic compounds related to their use in electronic and optoelectronic devices. The importance of organometallic compounds in the deposition of metal and semiconductor films for the fabrication of many electronic and opto-electronic devices cannot be exaggerated. Their scope has now extended to thin-film electronic ceramics and high-temperature oxide superconductors. A variety of organometallic compounds have been used as source materials in many types of processing procedures, such as metal–organic chemical vapor deposition (MOCVD), metalorganic vapor-phase epitaxy (MOVPE), metal–organic molecular-beam epitaxy (MOMBE), etc. Deposited materials include silicon, Group III–V and II–VI compound semiconductors, metals, superconducting oxides and other inorganic materials. Organometallic compounds are utilized as such in many electronic and optoelectronic devices; examples are conducting and semiconducting materials, photovoltaic, photochromic, electrochromic and nonlinear optical materials. This review consists of two parts: (I) research related to the fabrication of semiconductor, metal and inorganic materials; and (II) research related to the direct use of organometallic materials and basic fundamental research.  相似文献   
10.
Summary Dielectric measurements on Na2B4O7(99.5%)−V2O5(0.5%) glass system, in the frequency range 10−3 to 104 Hz and temperature range 300 to 500 K, have been carried out. The normalized plots of complex capacitance have shown a single mechanism responsible for conduction for both volume and surface measurements with their close values of activation energies (0.67±0.03) eV and (0.64±0.03) eV, respectively. The low-frequency dispersion (LFD) behaviour has been observed to be perturbed by the presence of more than one competing process. The impedance plots have shown a parallel combination of a capacitor (C) and a resistor (R), with some contribution of a dispersive element due to charge accumulation in the vicinity of the electrodes. The values ofR andC were found to be of the same order of magnitude, for both surface and volume measurements. The observedR has shown a decrease with an increase in temperature due to an increase in mobility of Na+ ions, whereasC remains practicaly constant. The complex capacitance surface behaviour is dominated by volume, due to hygroscopy of this glass system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号