首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   56篇
  国内免费   16篇
化学   605篇
晶体学   1篇
数学   1篇
物理学   15篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   15篇
  2017年   12篇
  2016年   26篇
  2015年   17篇
  2014年   25篇
  2013年   33篇
  2012年   27篇
  2011年   34篇
  2010年   45篇
  2009年   57篇
  2008年   31篇
  2007年   39篇
  2006年   43篇
  2005年   31篇
  2004年   56篇
  2003年   34篇
  2002年   24篇
  2001年   12篇
  2000年   2篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1989年   1篇
  1985年   1篇
排序方式: 共有622条查询结果,搜索用时 31 毫秒
1.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   
2.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   
3.
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004  相似文献   
4.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   
5.
6.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   
7.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
8.
Polyelectrolyte complexes (PECs) have been prepared from well‐defined (quaternized) poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and high molecular weight poly(2‐acrylamido‐2‐methylpropane sodium sulfonate) (PAMPSNa) after a thorough study of their viscometric properties. The effect of pH and quaternization degree of PDMAEMA on PECs stoichiometry has been examined. PEC‐based materials have been characterized in terms of thermal stability, equilibrium swelling degree, and free/bound water composition. The stoichiometry and swellability of the physically crosslinked hydrogels obtained from fully quaternized PDMAEMA/PAMPSNa complexes do not depend on pH. In contrast, PECs made of non quaternized PDMAEMA and PAMPSNa are highly affected by pH, and could reversibly disintegrate at pH ≥ 9. Partially quaternized PDMAEMA/PAMPSNa PECs exhibit intermediate properties and form stable loose structures in the whole investigated pH range. Finally, stable dispersions of PECs nanoparticles have been successfully produced from dilute solutions of the complementary polyelectrolytes. The nanoparticle average diameter as determined by dynamic light scattering proved to depend on the molar fraction of DMAEMA‐based subunits and on the initial polyelectrolyte concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5468–5479, 2006  相似文献   
9.
Adsorption of the cationic polymers poly(methacrylamidopropyltrimethyl ammonium chloride) (PMAPTAC) and poly(1,1-dimethylpiperidinium-3,5-diallylmethylene chloride) (PDMPDAMC) on human hair was studied by measurements of the amount of polymer adsorbed and by the streaming potential method. Results reflect the amphoteric nature of the keratin surface and show that the excess of anionic sites at pH values above 4 is the main driving force for the adsorption of cationic polyelectrolytes. Lowering the pH below 4 or addition of neutral salt (KCl) reduces the amount of adsorbed polymer. It was shown that the adsorption of cationic polymer in the concentration range 0.01 to 0.1 % and at neutral pH reverses the overall character of the surface from anionic to cationic. Keratin fibers modified in this manner do not exhibit amphoteric character and bear excess positive charge in the pH range 2–9.5. The value of the amount of the polymer adsorbed at saturation concentration (2 mg/g) as well as the lack of molecular weight effect in the range (5 · 104 – 106) on the amount of polymer adsorbed suggest that polymer chains adopt a rather extended conformation on the fiber surface. Some data concerning the formation of a complex between adsorbed cationic polymer and anionic detergents or polyelectrolytes are also presented.  相似文献   
10.
Multisticker associative polyelectrolytes of acrylamide (≈86 mol %) and sodium 2‐acrylamido‐2‐methylpropanesulfonate (≈12 mol %), hydrophobically modified with N,N‐dihexylacrylamide groups (≈2 mol %), were prepared with a micellar radical polymerization technique. This process led to multiblock polymers in which the length of the hydrophobic blocks could be controlled through variations in the surfactant‐to‐hydrophobe molar ratio, that is, the number of hydrophobes per micelle (NH). The rheological behavior of aqueous solutions of polymers with the same molecular weight and the same composition but with two different hydrophobic block lengths (NH = 7 or 3 monomer units per block) was investigated as a function of the polymer concentration with steady‐flow, creep, and oscillatory experiments. The critical concentration at the onset of the viscosity enhancement decreased as the length of the hydrophobic segments in the polymers increased. Also, an increase in the NH value significantly enhanced the thickening ability of the polymers and affected the structure of the transient network. In the semidilute unentangled regime, the behavior of the polymer with long hydrophobic segments (NH = 7) was studied in detail. The results were well explained by the sticky Rouse theory of associative polymer dynamics. Finally, the viscosity decreased with an increase in the temperature, mainly because of a lowering of the sample relaxation time. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1640–1655, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号