首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
化学   17篇
物理学   2篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  1992年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
The carbapenem class of β-lactams has been optimized against Gram-negative bacteria producing extended-spectrum β-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d -transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity. As β-lactams are structure analogs of peptidoglycan precursors, the substituents were chosen to increase similarity between the drug and the substrate. Fourteen peptido-carbapenems were efficiently synthesized. They were more effective than the reference drug, meropenem, owing to the positive impact of a phenethylthio substituent introduced at position C2 but the peptidomimetics added at position C8 did not further improve the activity. Thus, position C8 can be modified to modulate the pharmacokinetic properties of highly efficient carbapenems.  相似文献   
2.
Dimethylmaleoyl (DMM) moiety has become an important amine protective group in sugar chemistry. We disclose herein that DMM-containing D-glucosamine analogues, because of their electrophilic nature, are prone to reactions with strong nucleophiles, such as hydrazine, resulting in a set of undesired side products that are difficult to detect, yet proved to be problematic for organic synthesis.  相似文献   
3.
This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.  相似文献   
4.
Peptidoglycan is a widespread bacterial PAMP molecule and a powerful initiator of innate immune responses. It consists of repeating units of MDP, which as a monomer is only weakly immunostimulatory. Here, MDP-coupled dendrimers were prepared and investigated for stimulation of pig blood mononuclear cells. Compared to monomeric MDP, MDP-dendrimers induced a markedly enhanced production of IL-12 p40, IL-1β and IL-6 and completely down-regulated surface expression of B7 and MHC class II. These results suggest a possible novel strategy based on controlled multimerization of minimal PAMP motifs on dendrimers for preparing molecularly defined immunostimulators with predictable bioactivities.  相似文献   
5.
Summary The elimination of infectious non-self by the host defense systems of multicellular organisms requires a variety of recognition and effector molecules. The diversity is generated in somatic cells or encoded in the germ-line. In adaptive immunity in jawed vertebrates, the diversity of immunoglobulins and antigen receptors is generated by gene rearrangements in somatic cells. In innate immunity, various effector molecules and pattern recognition receptors, such as antimicrobial peptides and peptidoglycan recognition proteins, are encoded in the germ-line of multicellular organisms, including insects and jawed vertebrates. In the present review, we discuss how insect host defense systems recognize and eliminate a multitude of microbes via germ-line-encoded molecules, including recent findings that a Drosophila member of the immunoglobulin superfamily is extensively diversified by alternative splicing in somatic immune cells and participates in the elimination of bacteria.  相似文献   
6.
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.  相似文献   
7.
8.
The contribution of various cell-surface components to Cu2+ adsorption by a Gram-negative bacterium, Pseudomonas putida 5-x, that was isolated from local electroplating effluent with a high capability to accumulate heavy metal ions was studied. The cell superficial layer had a negative effect on Cu2+ adsorption of the bacterial cells. Cu2+ adsorption capacity of the separated cell envelopes was fivefold more than that of the intact cells, owing to the liberation of more and more binding sites during the separation process. Some main components in the cell envelope, such as the peptidoglycan (PEG) layer, outer membrane, and inner membrane, provide the capability for Cu2+ adsorption. The content of the components in the cell envelope is in the order inner membrane > outer membrane > PEG layer, and their Cu2+ adsorption capacity was in the order PEG layer > outer membrane > inner membrane. The total contribution of the separated PEG layer material to Cu2+ adsorption by the cell envelope was no more than 15%, and the outer membrane and inner membrane contributed about 30–35% and 25–30%, respectively. The relatively high phospholipid content in the outer membrane may be the major reason for the higher adsorption capacity of the outer membrane to Cu2+ and, hence, such a high Cu2+ adsorption capacity of P. putida 5-x cell envelope.  相似文献   
9.
10.
Chemistry-based investigation is reviewed which led to identification of the active entities responsible for the immunostimulating potencies of peptidoglycan and lipopolysaccharide. Though these glycoconjugates which ubiquitously occur in wide range of bacteria as the essential components of their cell envelopes have long been known to enhance the immunological responses of higher animals, neither the precise chemical structures required nor the mechanism of their action remained to be elucidated until early 1970s. Chemical synthesis of partial structures of peptidoglycan proved N-acetylmuramyl-L-alanyl-D-isoglutamine to be the minimum structure responsible for the activity and led to later identification of its receptor protein Nod2 present in animal cells. Another active partial structure of peptidoglycan, γ-D-glutamyl-meso-diaminopimelic acid, and its receptor Nod1 were also identified as well. With regard to lipopolysaccharide, its glycolipid part named lipid A was purified and the structure studied. Chemically synthesized lipid A according to the newly elucidated structure exhibited full activity described for lipopolysaccharide known as endotoxin. Synthetic homogeneous lipid A and its structural analogues and labeled derivatives enabled precise studies of their interaction with receptor proteins and the mechanism of their action. Chemical synthesis of homogeneous partial structures of peptidoglycan and lipopolysaccharide gave unequivocal evidences for the concept that definite small molecular parts of these complex macromolecular bacterial glycoconjugates are specifically recognized by their respective receptors and trigger our defense system now widely recognized as innate immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号