首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   3篇
化学   108篇
数学   1篇
物理学   16篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   17篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   14篇
  2007年   9篇
  2006年   4篇
  2005年   13篇
  2004年   11篇
  2003年   12篇
  2002年   3篇
  2001年   2篇
排序方式: 共有125条查询结果,搜索用时 312 毫秒
1.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   
2.
The thermophysical and mechanical properties of a nanocomposite material composed of amine‐cured diglycidyl ether of bisphenol A (DGEBA) reinforced with organomontmorillonite clay are reported. The storage modulus at 100 °C, which was above the glass‐transition temperature (Tg), increased approximately 350% with the addition of 10 wt % (6.0 vol %) of clay. Below the Tg, the storage modulus at 30 °C increased 50% relative to the value of unfilled epoxy. It was determined that the Tg linearly increased as a function of clay volume percent. The tensile modulus of epoxy at room temperature increased approximately 50% with the addition of 10 wt % of clay. The reinforcing effect of the organoclay nanoplatelets is discussed with respect to the Tandon–Weng and Halpin–Tsai models. A pseudoinclusion model is proposed to describe the behavior of randomly oriented, uniformly dispersed platelets in nanocomposite materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4391–4400, 2004  相似文献   
3.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   
4.
Polyethylene/montmorillonite clay nanocomposites were obtained via direct melt intercalation. The clay was organically modified with four different types of quaternary ammonium salts. The objective of this work is to study the use of montmorillonite clay in the production of nanocomposites by means on rheological, mechanical and crystallization properties of nanocomposites and to compare to the properties of the matrix and PE/unmodified clay nanocomposites. In general, the tensile test showed that the yield strength and modulus of the nanocomposites are close to the pure PE. Apparently, the mixture with Dodigen salt seems to be more stable than the pure PE and PE/unmodified clay.  相似文献   
5.
Adsorption of erythrosin-B (EB) and fast green (FG) to a non-charged organosmectite based on crystal violet adsorbed up to 100% of the cation exchange capacity (CEC) was tested. Adsorption isotherms of EB and FG were prepared at 3, 24 and 50°C. All isotherms are of H-type reaching loads of approximately up to 20% of the original CEC of the crude montmorillonite (up to 0.15 and 0.10 mol dye kg–1 clay for EB and FG, respectively). Adsorption decreases with temperature, indicating an exothermic process. Enthalpy was evaluated using van’t Hoff equation, yielding approximately –20 kJ mol–1 for both dyes.  相似文献   
6.
7.
Photo‐oxidation of syndiotactic polypropylene–sPP/organoclay nanocomposites was performed. Nanocomposites were prepared in situ by melt compounding of sPP, compatibilizer (iPP grafted with maleic anhydride–iPP‐g‐MAN) and organoclay filler ME C18 (modified with octadecyl ammonium chains in intergaleries of layered silicate, of which silicate layers (about 1 nm thin) were exfoliated). The influence of ME C18 nanoparticles alone (in content region 1 to 15 wt%) and together with compatibilizer iPP‐g‐MAN on the photostability of the sPP nanocomposite was studied. It was found that the silicate ME C18 nanoparticles alone catalyze the photooxidation and shorten the induction period of photo‐oxidation to one fourth (at the content of 5 wt% of ME C18) in comparison with unfilled sPP) and the presence of compatibilizer supports the photo‐oxidation of sPP nanocomposite. The ME C18 nanoparticles decrease the efficiency of UV stabilizers. The rate of photo‐oxidation of sPP/clay nanocomposite after the induction period is significantly higher than unfilled sPP. The mechanism of photo‐oxidation is discussed.  相似文献   
8.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   
9.
Photoluminescence (PL) of a heterocomposite, consisting of the nematic liquid crystal (LC) 4-pentyl-4´-cyanobiphenyl (5CB) and anisometric nanoparticles of montmorillonite (MMT) clay, modified by cetyltrimethylammonium bromide (CTAB) has been investigated at 4.2 and 300 K. The incorporation of this organoclay (B4) to 5CB decreases the emission intensity by 7–8 times due to efficient resonant quenching of the exciting energy by the organoclay. The spectrum shifts to a long-wave region, with this effect being considerably larger at low temperatures. Graphical separation of complex bands, corresponding to the bulk 5CB and 5СВ?+?В4 heterosystem at both temperatures revealed that the presence of the organoclay resulted in a significant growth of LC dimer quantity, shifting spectra towards longer wavelengths. Changes in the 5CB luminescence under organoclay influence can be explained by quite strong interphase interactions specified earlier by infrared spectroscopy between the MMT surface and LC, and by a realisation of more flat conformations of 5CB molecules. Confinement effects prevent full crystallisation of 5CB in the 5CB?+?B4 composite, and LC dimer structures located in the organoclay near-surface layers on the outer surface of the nanoparticles and inside its galleries remain in a larger amount, at low temperature, when compared to bulk 5CB. The remaining LC crystallises and photoluminescence from the 5CB monomers becomes intense.  相似文献   
10.
Novel bioengineering functional copolymer‐g‐biopolymer‐based layered silicate nanocomposites were fabricated by catalytic interlamellar bulk graft copolymerization of L‐lactic acid (LA) monomer onto alternating copolymer of maleic anhydride (MA) with 1‐octadecene as a reactive matrix polymer in the presence of preintercalated LA…organo‐MMT clay (reactive ODA‐MMT and non‐reactive DMDA‐MMT) complexes as nanofillers and tin(oct)2 as a catalyst under vacuum at 80°C. To characterize the functional copolymer layered silicate nanocomposites and understand the mechanism of in situ processing, interfacial interactions and nanostructure formation in these nanosystems, we have utilized a combination of variuous methods such as FT‐IR spectroscopy, X‐ray diffraction (XRD), dynamic mechanical (DMA), thermal (DSC and TGA‐DTG), SEM and TEM morphology. It was found that in situ graft copolymerization occurred through the following steps: (i) esterification of anhydride units of copolymer with LA; (ii) intercalation of LA between silicate galleries; (iii) intercalation of matrix copolymer into silicate layers through in situ amidization of anhydride units with octadecyl amine intercalant; and (iv) interlamellar graft copolymerization via in situ intercalating/exfoliating processing. The main properties and observed micro‐ and nanoporous surface and internal core–shell morphology of the nanocomposites significantly depend on the origin of MMT clays and type of in situ processing (ion exchanging, amidization reaction, strong H‐bonding and self‐organized hydrophobic/hydrophilic interfacial interactions). This developed approach can be applied to a wide range of anhydride‐containing copolymers such as random, alternating and graft copolymers of MA to synthesize new generation of polymer‐g‐biopolymer silicate layered nanocomposites and nanofibers for nanoengineering and nanomedicine applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号