首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   19篇
  国内免费   4篇
化学   80篇
物理学   26篇
  2023年   4篇
  2022年   3篇
  2021年   17篇
  2020年   14篇
  2019年   8篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   4篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
排序方式: 共有106条查询结果,搜索用时 62 毫秒
1.
Here, we demonstrate the applicability of self-assembling linear-dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self-assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA-PAMAM LDBCs to serve as nanocarriers for applications in drug delivery.  相似文献   
2.
3.
Particle replication in nonwetting templates (PRINT) is a continuous, roll‐to‐roll, high‐resolution molding technology which allows the design and synthesis of precisely defined micro‐ and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll‐to‐roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP‐compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences.  相似文献   
4.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   
5.
Most NIR-IIb fluorophores are nanoparticle-based probes with long retention (≈1 month or longer) in the body. Here, we applied a novel cross-linked coating to functionalize core/shell lead sulfide/cadmium sulfide quantum dots (PbS/CdS QDs) emitting at ≈1600 nm. The coating was comprised of an amphiphilic polymer followed by three crosslinked amphiphilic polymeric layers (P3 coating), imparting high biocompatibility and >90 % excretion of QDs within 2 weeks of intravenous administration. The P3-QDs were conjugated to an engineered anti-CD8 diabody (Cys-diabody) for in vivo molecular imaging of CD8+ cytotoxic T lymphocytes (CTLs) in response to anti-PD-L1 therapy. Two-plex molecular imaging in combination with down-conversion Er nanoparticles (ErNPs) was performed for real-time in vivo monitoring of PD-L1 positive tumor cells and CTLs with cellular resolution by non-invasive NIR-IIb light sheet microscopy. Imaging of angiogenesis in the tumor microenvironment and of lymph nodes deep in the body with a signal-to-background ratio of up to ≈170 was also achieved using P3-QDs.  相似文献   
6.
Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling.  相似文献   
7.
Ground‐breaking advances in nanomedicine (defined as the application of nanotechnology in medicine) have proposed novel therapeutics and diagnostics, which can potentially revolutionize current medical practice. Polyhedral oligomeric silsesquioxane (POSS) with a distinctive nanocage structure consisting of an inner inorganic framework of silicon and oxygen atoms, and an outer shell of organic functional groups is one of the most promising nanomaterials for medical applications. Enhanced biocompatibility and physicochemical (material bulk and surface) properties have resulted in the development of a wide range of nanocomposite POSS copolymers for biomedical applications, such as the development of biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications, and biological sensors. The application of POSS nanocomposites in combination with other nanostructures has also been investigated including silver nanoparticles and quantum dot nanocrystals. Chemical functionalization confers antimicrobial efficacy to POSS, and the use of polymer nanocomposites provides a biocompatible surface coating for quantum dot nanocrystals to enhance the efficacy of the materials for different biomedical and biotechnological applications. Interestingly, a family of POSS‐containing nanocomposite materials can be engineered either as completely non‐biodegradable materials or as biodegradable materials with tuneable degradation rates required for tissue engineering applications. These highly versatile POSS derivatives have created new horizons for the field of biomaterials research and beyond. Currently, the application of POSS‐containing polymers in various fields of nanomedicine is under intensive investigation with expectedly encouraging outcomes.

  相似文献   

8.
9.
Studies into the cell nucleus' incorporation of gold nanoparticles (AuNPs) are often limited by ambiguities arising from conventional imaging techniques. Indeed, it is suggested that to date there is no unambiguous imaging evidence for such uptake in whole cells, particularly at the single nanoparticle level. This shortcoming in understanding exists despite the nucleus being the most important subcellular compartment in eukaryotes and gold being the most commonly used metal nanoparticle in medical applications. Here, dual‐angle X‐ray flouresence is used to show individually resolved nanoparticles within the cell nucleus, finding them to be well separated and 79% of the intranuclear population to be monodispersed. These findings have important implications for nanomedicine, illustrated here through a specific exemplar of the predicted enhancement of radiation effects arising from the observed AuNPs, finding intranuclear dose enhancements spanning nearly five orders of magnitude.  相似文献   
10.
Drug nanocarriers (NCs) with sizes usually below 200 nm are gaining increasing interest in the treatment of severe diseases such as cancer and infections. Characterization methods to investigate the morphology and physicochemical properties of multifunctional NCs are key in their optimization and in the study of their in vitro and in vivo fate. Whereas a variety of methods has been developed to characterize “bulk” NCs in suspension, the scope of this review is to describe the different approaches for the NC characterization on an individual basis, for which fewer techniques are available. The accent is put on methods devoid of labelling, which could lead to artefacts. For each characterization method, the principles and approaches to analyze the data are presented in an accessible manner. Aspects related to sample preparation to avoid artefacts are indicated, and emphasis is put on examples of applications. NC characterization on an individual basis allows gaining invaluable information in terms of quality control, on: i) NC localization and fate in biological samples; ii) NC morphology and crystallinity; iii) distribution of the NC components (drugs, shells), and iv) quantification of NCs’ chemical composition. The individual characterization approaches are expected to gain increasing interest in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号