首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2006年   2篇
  2001年   1篇
排序方式: 共有9条查询结果,搜索用时 328 毫秒
1
1.
Hydrosoluble trehalose lipid (a biosurfactant) was employed for the first time as a green extraction solution to extract the main antioxidant compounds (geniposidic acid, chlorogenic acid, caffeic acid, and rutin) from functional plant tea (Eucommia ulmoides leaves). Single‐factor tests and response surface methodology were employed to optimize the extraction conditions for ultrasound‐assisted micellar extraction combined with ultra‐high‐performance liquid chromatography in succession. A Box‐Behnken design (three‐level, three‐factorial) was used to determine the effects of extraction solvent concentration (1–5 mg/mL), extraction solvent volume (5–15 mL), and extraction time (20–40 min) at a uniform ultrasonic power and temperature. In consequence, the best analyte extraction yields could be attained when the trehalose lipid solution concentration was prepared at 3 mg/mL, the trehalose lipid solution volume was 10 mL and the extraction time was set to 35 min. In addition, the recoveries of the antioxidants from Eucommia ulmoides leaves analyzed by this analytical method ranged from 98.2 to 102%. These results indicated that biosurfactant‐enhanced ultrasound‐assisted micellar extraction coupled with a simple ultra‐high‐performance liquid chromatography method could be effectively applied in the extraction and analysis of antioxidants from Eucommia ulmoides leaf samples.  相似文献   
2.
We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.  相似文献   
3.
The individual solubilization of single-walled carbon nanotubes (SWNTs), achieved by using ten different anionic-, zwitterionic-, and nonionic-steroid biosurfactants and three different sugar biosurfactants, was examined. Aqueous micelles of anionic cholate analogues, such as sodium cholate (SC), sodium deoxycholate (SDC), sodium taurocholate (STC), sodium taurodeoxycholate (STDC), sodium glycocholate (SGC), as well as N,N-bis(3-D-gluconamidopropyl)cholamide (BIGCHAP) and N,N-bis(3-D-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP), exhibited good abilities to dissolve the SWNTs individually. Aqueous micelles of nonionic biosurfactants, such as sucrose monocholate (SMC), n-octyl-beta-D-glucoside (OG), n-decyl-beta-D-maltoside (DM), and n-decanoyl-N-methylglucamide (MEGA-10), could dissolve the SWNTs, however, the solubilization abilities were weaker than those of the anionic cholate analogues. In sharp contrast, the solubilization abilities of the zwitterionic micelles of 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid (CHAPS) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxypropanesulfonic acid (CHAPSO) were very low, and almost zero for OG. It is evident that the chemical structures, in particular the substituent groups of the surfactants, play an important role in the solubilization of SWNTs. The near-IR photoluminescence behaviors of the SWNTs dissolved in aqueous micelles and in 1 mM biosurfactants were investigated. The chirality indices of the SWNTs dissolved in these solutions depend on the chemical structures of the biosurfactants. The Raman spectra of the SWNTs dissolved in a 1 mM solution of SC suggest the selective extraction of the metallic SWNTs. Finally, a possible solubilization mechanism using steroid surfactants is described. The SWNTs dissolved individually in water-containing biocompounds are useful in many areas of nano- and materials chemistry.  相似文献   
4.
The purpose of this work was to evaluate the possibility of adding tea saponin (TS) to reduce the synthetic surfactant concentration, and maintain or improve the shelf stability of nanoemulsions. The Zanthoxylum bungeanum essential oil (2.5 wt%) loaded oil-in-water nanoemulsions were co-stabilized by Tween 40 (0.5–2.5 wt%) and TS (0.1–5 wt%). A combination of several analytical techniques, such as dynamic laser scattering, interfacial tension, zeta potential, and transmission electron microscope, were used for the characterization of nanoemulsions. Low levels of TS (0.1–0.5 wt%) with Tween 40 had significant effects on the emulsification, and a nanoemulsion with the smallest droplet diameter of 89.63 ± 0.67 nm was obtained. However, in the presence of high TS concentration (0.5–5 wt%), micelles generated by the non-adsorbed surfactants in the aqueous lead to droplets growth. In addition, the combinations of Tween 40 and TS at the high level (>3.5 wt%) exerted a synergistic effect on stabilizing the nanoemulsions and preventing both Ostwald ripening and coalescence. The negative charged TS endowed the droplets with electrostatic repulsion and steric hinderance appeared to prevent flocculation and coalescence. These results would provide a potential application of natural TS in the preparation and stabilization of nanoemulsions containing essential oil.  相似文献   
5.
The understanding of the formation, structures, and properties of emulsions is essential to the creation and stabilization of structures in food. The increasing use of surfactants, the identification of compounds with low toxicity and good surface activity properties is of great interest. The relevance of the major end points specified in the Organisation for Economic Co-operation and Development (OECD) guidelines for the hazard assessment of food chemicals is critically analyzed and main parameters are acute toxicity, subacute repeated studies, allergy, reproductive toxicity, long-term studies, and mutagenicity tests. We focus this article on surfactant association structures and food colloids. There is almost infinite number of combinations are organized and arranged in very complex internal microstructures with various types of assemblies such as dispersions, emulsions, foams, gels, etc. Low-mass surfactants are very mobile at the interface and they are particularly efficient reducing the interfacial tension. As a result, they rapidly coat the freshly created oil-water interface during emulsification. In this category, we mainly mentioned monoglycerides, lecithins, glycolipids, fatty alcohols and fatty acids. High-mass surfactants cover protein and polysacharide groups. The protein molecule may interpenetrate in the lipid phase to various degrees. The specific binding is predominantly electrostatic: The headgroups of the surfactants bind to groups of opposite charge on the protein. The saturation binding for anionic surfactants is pH-independent and seems to be controlled by the cooperative hydrophobic interactions. Polysaccharides and smallmolecule surfactants are two of the predominant groups of amphiphilic materials that have been explored for the stabilization of emulsions. One of the most important aspects of polymer-surfactant systems is their ability to control stability and rheology over a wide range of composition. Biocompatible, biodegradable, and/or nontoxic emulsion-based formulations have great potential for applications in the food. The combination of particular characteristics such as emulsifying, anti-adhesive and antimicrobial activities presented by biosurfactants suggests potential application as multipurpose ingredients or additives.  相似文献   
6.
Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The unique and complex molecular structures with several chiral centers that are molecularly engineered by microorganisms must have led to the sophisticated self-assembling properties of the glycolipid biosurfactants.  相似文献   
7.
A series of novel alkoxy nonionic biosurfactants were synthesized by ring-opening reaction of methoxy poly(ethylene glycols) and alkylene oxide. The chemical structures of these biosurfactants were confirmed by Fourier-transform infrared spectroscopy (FTIR) and 1HNMR spectra. The surface tensions of these nonionic biosurfactants in the aqueous solutions were determined using a surface tensionmeter. The results showed that the critical micelle concentrations decreased with the increase of hydrophobic chain. However, due to the effect of intermolecular hydrogen bonding, the critical surface tensions of these nonionic biosurfactants increased with increasing the hydrophobic chain and were lower than those of conventional nonionic biosurfactants. Meanwhile, the effects of electrolytes on surface tension of these nonionic biosurfactants were slight. Due to the excellent surface activity, these alkoxy nonionic biosurfactants could have great potential in cleansing, oil recovery, and drug delivery.  相似文献   
8.
The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, wasevaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016–0.008 g/L) The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. AC:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).  相似文献   
9.
The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号