首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
化学   12篇
力学   1篇
物理学   1篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2015年   3篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有14条查询结果,搜索用时 843 毫秒
1.
A challenge in free energy calculation for complex molecular systems by computer simulation is to obtain a reliable estimate within feasible computational time. In this study, we suggest an answer to this challenge by exploring a simple method, overlap sampling (OS), for producing reliable free-energy results in an efficient way. The formalism of the OS method is based on ensuring sampling of important overlapping phase space during perturbation calculations. This technique samples both forward and reverse free energy perturbation (FEP) to improve the free-energy calculation. It considers the asymmetry of the FEP calculation and features an ability to optimize both the precision and the accuracy of the measurement without affecting the simulation process itself. The OS method is tested at two optimization levels: no optimization (simple OS), and full optimization (equivalent to Bennett's method), and compared to conventional FEP techniques, including the widely used direct FEP averaging method, on three alchemical mutation systems: (a) an anion transformation in water solution, (b) mutation between methanol and ethane, and (c) alchemical change of an adenosine molecule. It is consistently shown that the reliability of free-energy estimates can be greatly improved using the OS techniques at both optimization levels, while the performance of Bennett's method is particularly striking. In addition, the efficiency of a calculation can be significantly improved because the method is able to (a) converge to the right answer quickly, and (b) work for large perturbations. The basic two-stage OS method can be extended to admit additional stages, if needed. We suggest that the OS method can be used as a general perturbation technique for computing free energy differences in molecular simulations.  相似文献   
2.
The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson–Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane‐alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM‐based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane‐alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane‐alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug‐binding in computer‐aided drug design. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
This paper examines the negative response to Dalton’s atomic symbols by situating them in the context of the normative eighteenth-century representational system of affinity tables. Aesthetic analysis of the affinity tables reveals them as schema embedded with a potent functionalist empiricism. In contrast, the aesthetics of Dalton's symbols is associated with hypothetico-deductivism and alchemical iconicism. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
In a recent article (Bieler et al., J. Chem. Theory Comput. 2014, 10, 3006), we introduced a combination of λ‐dynamics and local‐elevation umbrella‐sampling termed λ‐LEUS to calculate free‐energy changes associated with alchemical processes using molecular dynamics simulations. This method was suggested to be more efficient than thermodynamic integration (TI), because the dynamical variation of the alchemical variable λ opens up pathways to circumvent barriers in the orthogonal space (defined by the N – 1 degrees of freedom that are not subjected to the sampling enhancement), a feature λ‐LEUS shares with Hamiltonian replica‐exchange (HR) approaches. However, the mutation considered, hydroquinone to benzene in water, was no real challenge in terms of orthogonal‐space properties, which were restricted to solvent‐relaxation processes. In the present article, we revisit the comparison between TI and λ‐LEUS considering non‐trivial mutations of the central residue X of a KXK tripeptide in water (with X = G, E, K, S, F, or Y). Side‐chain interactions that may include salt bridges, hydrogen bonds or steric clashes lead to slow relaxation in the orthogonal space, mainly in the two‐dimensional subspace spanned by the central and ψ dihedral angles of the peptide. The efficiency enhancement afforded by λ‐LEUS is confirmed in this more complex test system and can be attributed explicitly to the improved sampling of the orthogonal space. The sensitivity of the results to the nontrivial choices of a mass parameter and of a thermostat coupling time for the alchemical variable is also investigated, resulting in recommended ranges of 50 to 100 u nm2 and 0.2 to 0.5 ps, respectively. © 2015 Wiley Periodicals, Inc.  相似文献   
5.
We propose a computational workflow for robust and accurate prediction of both binding poses and their affinities at early stage in designing drug candidates. Small, rigid ligands with few intramolecular degrees of freedom, for example, fragment-like molecules, have multiple binding poses, even at a single binding site, and their affinities are often close to each other. We explore various structures of ligand binding to a target through metadynamics using a small number of collective variables, followed by reweighting to obtain the atomic coordinates. After identifying each binding pose by cluster analysis, we perform alchemical free energy calculations on each structure to obtain the overall value. We applied this protocol in computing free energy of binding for the theophylline-RNA aptamer complex. Of the six (meta)stable structures found, the most favorable binding structure is consistent with the structure obtained by NMR. The overall free energy of binding reproduces the experimental values very well.  相似文献   
6.
We propose a free energy calculation method for receptor–ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host–guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein–ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.  相似文献   
7.
We attempt to optimize the efficiency of thermodynamic integration, as defined by the minimal number of unphysical intermediate states required for the computation of accurate and precise free energy differences. The suitability of various numerical quadrature methods is tested. In particular, we compare the trapezoidal rule, Simpson's rule, Gauss-Legendre, Gauss-Kronrod-Patterson, and Clenshaw-Curtis integration, as well as integration based on a cubic spline approximation of the integrand. We find that Simpson's rule and spline integration are already significantly more efficient that the trapezoidal rule, i.e., correct free energy differences can be obtained using fewer λ-states. We demonstrate that Simpson's rule can be used advantageously with nonequidistant values of the abscissa, which increases the flexibility of the method. Efficiency is enhanced even further if higher order methods, such as Gauss-Legendre, Gauss-Kronrod-Patterson, or Clenshaw-Curtis integration, are used; no more than seven λ-states, which in the case of Clenshaw-Curtis integration include the physical end states, were required for accurate results in all test problems studied. Thus, the performance of thermodynamic integration can equal that of Bennett's acceptance ratio method. We also show, however, that the high efficiency found here relies on the particular functional form of the soft-core potential used; overall, thermodynamic integration is more susceptible to the details of the hybrid Hamiltonian used than Bennett's acceptance ratio method. Therefore, we recommend Bennett's acceptance ratio method as the most robust method to compute alchemical free energy differences; nevertheless, scenarios when thermodynamic integration may be preferable are discussed.  相似文献   
8.
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease–behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease–behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.  相似文献   
9.
The most general way to improve the accuracy of binding‐affinity calculations for protein–ligand systems is to use quantum‐mechanical (QM) methods together with rigorous alchemical‐perturbation (AP) methods. We explore this approach by calculating the relative binding free energy of two synthetic disaccharides binding to galectin‐3 at a reasonably high QM level (dispersion‐corrected density functional theory with a triple‐zeta basis set) and with a sufficiently large QM system to include all short‐range interactions with the ligand (744–748 atoms). The rest of the protein is treated as a collection of atomic multipoles (up to quadrupoles) and polarizabilities. Several methods for evaluating the binding free energy from the 3600 QM calculations are investigated in terms of stability and accuracy. In particular, methods using QM calculations only at the endpoints of the transformation are compared with the recently proposed non‐Boltzmann Bennett acceptance ratio (NBB) method that uses QM calculations at several stages of the transformation. Unfortunately, none of the rigorous approaches give sufficient statistical precision. However, a novel approximate method, involving the direct use of QM energies in the Bennett acceptance ratio method, gives similar results as NBB but with better precision, ~3 kJ/mol. The statistical error can be further reduced by performing a greater number of QM calculations. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
We analyze the Hamiltonian‐interpolating schemes in chemical compound space. We show that if one allows for system‐dependent information there are trivial solutions to this problem that allow to linearly interpolate between any two given iso‐electronic Hamiltonians. If, on the other hand, one do not use any information about the system's Hamiltonians, we prove that there are no system‐independent multiplicative interpolating procedures that linearize the energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号