首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9073篇
  免费   959篇
  国内免费   2618篇
化学   9684篇
晶体学   65篇
力学   476篇
综合类   122篇
数学   1027篇
物理学   1276篇
  2024年   20篇
  2023年   197篇
  2022年   286篇
  2021年   458篇
  2020年   635篇
  2019年   435篇
  2018年   385篇
  2017年   373篇
  2016年   491篇
  2015年   398篇
  2014年   568篇
  2013年   781篇
  2012年   549篇
  2011年   555篇
  2010年   444篇
  2009年   510篇
  2008年   506篇
  2007年   557篇
  2006年   508篇
  2005年   488篇
  2004年   455篇
  2003年   489篇
  2002年   454篇
  2001年   309篇
  2000年   272篇
  1999年   220篇
  1998年   192篇
  1997年   157篇
  1996年   163篇
  1995年   142篇
  1994年   133篇
  1993年   95篇
  1992年   82篇
  1991年   52篇
  1990年   48篇
  1989年   40篇
  1988年   33篇
  1987年   27篇
  1986年   25篇
  1985年   35篇
  1984年   19篇
  1983年   10篇
  1982年   24篇
  1981年   9篇
  1980年   8篇
  1979年   7篇
  1978年   2篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   
3.
《Current Applied Physics》2020,20(3):456-461
Carbon-based electrocatalysts for oxygen reduction reaction (ORR), especially in anion exchange membrane fuel cells (AEMFCs), have received a lot of attention because they exhibit excellent stability and are comparable to commercial Pt/C catalysts. Currently, to maximize the catalytic activity of carbon-based electrocatalysts, there are two major strategies: heteroatom doping or exposing active edge sites. However, the approach of increasing heteroatomic dopants of active edge sites has been rarely addressed. In this study, we present a simple strategy to prepare edge-enriched graphene catalysts with an increased ratio of heteroatomic dopants suitable for ORR of AEMFCs. The catalysts were prepared under harsh oxidation conditions, followed by a simple co-doping process with boron and nitrogen. The ORR activity of the catalysts was observed to be related to an increase of edge sites with heteroatomic dopants. We believe that the edge-enriched structure leads to accelerated electron transfer with enhanced oxygen adsorption.  相似文献   
4.
The sonochemical formation of Au seeds and their autocatalytic growth to Au nanorods were investigated in a one-pot as a function of concentration of HAuCl4, AgNO3, and ascorbic acid (AA). The effects of ultrasonic power and irradiation time were also investigated. In addition, the formation rate of Au nanorods was analyzed by monitoring the extinction at 400 nm by UV–Vis spectroscopy and compared with the growth behavior of Au seeds to nanorods. Most of the reaction conditions affected the yield, size, and shape of Au nanorods formed. It was confirmed that the concentration balance between HAuCl4 and AA was important to proceed the formation of Au seeds and nanorods effectively. The formation rate became faster with increasing AA concentration and dog-bone shaped nanorods were formed at high AA concentration. It was also confirmed a unique phenomenon that the shape of Au nanorods changed even after the completion of the reduction of Au(I) in the case of short-time ultrasonic irradiation for Au seed formation.  相似文献   
5.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
6.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
7.
8.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
9.
Alkynes cycloaddition reactions are powerful tools for constructing cyclic molecules with optimal atom efficiency, but these reactions cannot proceed at ambient temperature without transition-metal catalysts. In this work, a heterobimetallic complex featuring an Nb–Fe triple bond, Nb(iPrNPMe2)3Fe–PMe3, has been evaluated as the potential catalyst for acetylene cycloaddition, using density functional theory. The calculated results show that the singlet-state (i.e. ground-state) Nb(iPrNPMe2)3Fe–PMe3 can be applied to benzene synthesis, but is not suitable for cyclobutadiene. Benzene can be obtained easily at room temperature and is the unique product on the singlet potential surface. The irradiation of infrared-red light can drive the excitation of singlet Nb(iPrNPMe2)3Fe–PMe3 to its triplet state. Both benzene and cyclobutadiene can be formed on the triplet reaction potential surface due to their low energy barriers. Therefore, Nb(iPrNPMe2)3Fe–PMe3 is a potential high reactivity heterobimetallic catalyst for the cyclotrimerization of alkynes. In the reaction process, the catalytic active site of Nb(iPrNPMe2)3Fe–PMe3 moves from niobium to iron.  相似文献   
10.
An efficient and stereodefined strategy is described for the asymmetric synthesis of a new styryllactone from the stem bark of Goniothalamus cardiopetalus, cardiobutanolide. The synthetic process is based on requisite manipulation of the functionalized bicyclic lactol-lactone intermediate incorporating the glucuronolactone-derived skeleton in a complete stereoselective manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号