首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
The structure of the “Type III” δ-Bi2O3-related superstructure phase in the system Bi2O3-Nb2O5 is presented. A starting model was constructed by considering the crystal-chemistry of the system in the context of symmetry constraints determined by electron diffraction. After applying initial distortions, this could be Rietveld-refined against a combination of synchrotron X-ray and time-of-flight neutron powder diffraction data. The undistorted starting model was independently optimized using solid-state ab initio energy calculations, giving a fully optimized structure in excellent agreement with that obtained by Rietveld refinement. This dual approach both validates the structure and demonstrates the value of combining accurate total energy calculations with traditional refinement techniques for the solution of complex structures using powder diffraction data. The structure (Bi94Nb32O221, Z=1, (#119), a=11.52156(18), ) consists of interacting corner-connected strings of NbO6 octahedra along 〈110〉F directions of the FCC subcell, and can be described as a hybrid of fluorite and pyrochlore types.  相似文献   
2.
We report the synthesis of Aurivillius-type phases incorporating magnetic M4+ cations (M=Mn, Ru, Ir), based on the substitution of M4+ for Ti4+ in Bi2Sr2(Nb,Ta)2TiO12. The key to incorporating these magnetic transition metal cations appears to be the partial substitution of Sr2+ for Bi3+ in the α-PbO-type layer of the Aurivillius phase, leading to a concomitant decrease in the M4+ content; i.e., the composition of the prepared compounds was Bi2−xSr2+x(Nb,Ta)2+xM1−xO12, x≈0.5. These compounds only exist over a narrow range of x, between an apparent minimum (x≈0.4) Sr2+ content in the α-PbO-type [Bi2O2] layer required for Aurivillius phases to form with magnetic M4+ cations, and an apparent maximum (x≈0.6) Sr2+ substitution in this [Bi2O2] layer. Rietveld-refinement of synchrotron X-ray powder diffraction data making use of anomalous dispersion at the Nb and Ru K edges show that the overwhelming majority of the incorporated M cations occupy the central of the three MO6 octahedral layers in the perovskite-type block. Magnetic susceptibility measurements are presented and discussed in the context of the potential for multiferroic (magnetoelectric) properties in these materials.  相似文献   
3.
The thermal evolution and structural properties of fluorite-related δ-Bi2O3-type Bi9ReO17 were studied with variable temperature neutron powder diffraction, synchrotron X-ray powder diffraction and electron diffraction. The thermodynamically stable room-temperature crystal structure is monoclinic P21/c, a=9.89917(5), b=19.70356(10), c=11.61597(6) Å, β=125.302(2)° (Rp=3.51%, wRp=3.60%) and features clusters of ReO4 tetrahedra embedded in a distorted Bi–O fluorite-like network. This phase is stable up to 725 °C whereupon it transforms to a disordered δ-Bi2O3-like phase, which was modeled with δ-Bi2O3 in cubic Fmm with a=5.7809(1) Å (Rp=2.49%, wRp=2.44%) at 750 °C. Quenching from above 725 °C leads to a different phase, the structure of which has not been solved but appears on the basis of spectroscopic evidence to contain both ReO4 tetrahedra and ReO6 octahedra.  相似文献   
4.
The thermal evolution and structural properties of fluorite-related δ-Bi2O3-type Bi9ReO17 were studied with variable temperature neutron powder diffraction, synchrotron X-ray powder diffraction and electron diffraction. The thermodynamically stable room-temperature crystal structure is monoclinic P21/c, a=9.89917(5), b=19.70356(10), c=11.61597(6) Å, β=125.302(2)° (Rp=3.51%, wRp=3.60%) and features clusters of ReO4 tetrahedra embedded in a distorted Bi-O fluorite-like network. This phase is stable up to 725 °C whereupon it transforms to a disordered δ-Bi2O3-like phase, which was modeled with δ-Bi2O3 in cubic Fmm with a=5.7809(1) Å (Rp=2.49%, wRp=2.44%) at 750 °C. Quenching from above 725 °C leads to a different phase, the structure of which has not been solved but appears on the basis of spectroscopic evidence to contain both ReO4 tetrahedra and ReO6 octahedra.  相似文献   
5.
The Ba-Bi-Ir-O system is found to contain two distinct perovskite-type phases: a rock-salt ordered double perovskite Ba2BiIrO6; and a 6H-type hexagonal perovskite Ba3BiIr2O9. Ba2BiIrO6 undergoes a series of symmetry-lowering phase transitions on cooling , all of which are second order except the rhombohedral→monoclinic one, which is first order. The monoclinic phase is only observed in a 2-phase rhombohedral+monoclinic regime. The transition and 2-phase region lie very close to 300 K, making the room-temperature X-ray diffraction patterns extremely complex and potentially explaining why Ba2BiIrO6 had not previously been identified and reported. A solid solution Ba2Bi1+xIr1−xO6, analogous to Ba2Bi1+xRu1−xO6, 0≤x≤2/3, was not observed. The 6H-type phase Ba3BiIr2O9 undergoes a clean second-order phase transition P63/mmcC2/c at 750 K, unlike 6H-type Ba3LaIr2O9, the P63/mmc structure of which is highly strained below 750 K but fails to distort coherently to the monoclinic phase.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号