首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Mesoporous organosilica as drug delivery carriers capable of achieving improved cargo release, enhanced biodegradation, and direct imaging with prolonged circulation time and tracking cargo distribution is highly in demand for biomedical applications. Herein, we report a ditelluride-bridged mesoporous organosilica nanoparticle (DTeMSN)/polyethylene glycol-curcumin (PEG-CCM) nanocomposite through coassembly with oxidative/redox and self-fluorescent response. Tellurium is introduced into the silica framework for the first time as a drug delivery vehicle. In this case, the DTeMSNs as an inner core enable disassembly under oxidative and redox conditions via the cleavage of ditelluride bond, facilitating the drug release of doxorubicin (DOX) in a matrix degradation controlled manner. Through the systematical comparison of diselenide-bridged MSNs and DTeMSNs, DTeMSNs exhibit remarkable advantages in loading capacity, drug release, and degradation behavior, thereby significantly affecting the cytotoxicity and antitumor efficacy. The self-fluorescent response of PEG-CCM shell coated on the surface of DTeMSNs can real-timely track the cellular uptake, DOX release, and biodistribution owing to the intrinsic and stable fluorescence of CCM. Moreover, PEG-CCM could prolong circulation time, provide preferable drug accumulation in tumors, and increase antitumor efficacy of DOX-loaded DTeMSNs. Our findings are likely to enrich the family of organosilica that served as fluorescence-guided drug delivery carriers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号