首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Photochemistry based on acenes and their derivatives is one of the emerging research areas in the field of polycyclic aromatic hydrocarbons (PAHs). However, due to the increased reactivity of larger acenes towards light and singlet oxygen, it is difficult to precisely control their photochemical reactions. Therefore, the unexpected reactivity of acene-based molecules brings about two challenging topics: how to design stable acenes and how to utilize the photochemistry to design new acene-based functional materials. In this review, we first focus on the mechanism of photochemistry of acenes to theoretically understand how these reactions could have happened. Next, we will give a summary on both acene-based photocyclization and photooxidation reactions.  相似文献   
3.
4.
Novel double N‐hetero[5]helicenes that are composed of two nitrogen‐substituted heteropentacenes are synthesized by tandem oxidative C N couplings via the cruciform heteropentacene dimers. The developed method is very facile and enables the synthesis of a double helicene in only two steps from commercially available naphthalene derivatives. These double N‐hetero[5]helicenes have larger torsion angles in the fjord regions than typical [5]helicenes, and optical/electrochemical measurements revealed a significant increase in the electronic communication between the two heteropentacene moieties of the double helicenes compared with their cruciform dimers. The optical resolution of one of the double helicenes was successfully carried out, and their stability towards racemization was remarkably higher than those of typical [5]helicenes. The synthetic strategy proposed in this paper should be versatile and widely applicable to the preparation of double helicenes from other N‐containing π‐conjugated planar molecules.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号