首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   23篇
  国内免费   83篇
化学   663篇
晶体学   2篇
力学   8篇
综合类   4篇
数学   16篇
物理学   68篇
  2024年   4篇
  2023年   8篇
  2022年   14篇
  2021年   22篇
  2020年   43篇
  2019年   37篇
  2018年   21篇
  2017年   33篇
  2016年   27篇
  2015年   13篇
  2014年   23篇
  2013年   69篇
  2012年   37篇
  2011年   62篇
  2010年   37篇
  2009年   52篇
  2008年   55篇
  2007年   47篇
  2006年   46篇
  2005年   16篇
  2004年   20篇
  2003年   11篇
  2002年   14篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有761条查询结果,搜索用时 15 毫秒
1.
The thermolysis of dicarbonylcyclopentadienyliron dimer in a sealed tube at 300°C has been reported to produce ferrocene, carbon monoxide, carbon dioxide, cyclopentadiene and elemental iron. We observe in addition to these products the production of biferrocene and elemental carbon. Thermolysis of carbonylcyclopentadienyliron tetramer (produced from the dimer by thermolysis in refluxing xylene) produces ferrocene, iron and carbon monoxidre; no biferrocene, carbon dioxide or elemental carbon are produced. A scheme is proposed to account for these products.  相似文献   
2.
The crystal structure of a novel ferrocene derivative with potential flame-retardant/smoke-suppressant activity, 1,4,5,6,7,7-hexachloro-2-endo-ferrocenyl-hydroxymethyl-3-endo-hydroxymethyl-5-norbornene, has been determined. Some of the carbon–carbon bonds within the chlorendic residue are unusually long, and there is no interaction between the hydroxyl groups and the iron atom. There is evidence of intramolecular hydrogen bonding between the two hydroxyl groups.  相似文献   
3.
This paper is focused on in situ preparation of melamine cyanurate (MCA) nanoparticles from reaction of melamine (MEL) and cyanuric acid (CA) and their flame retardant polyamide 6 (PA6) composite in the extrusion process through a novel reactive processing method. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were utilized to characterize the in situ formed MCA nanoparticles and their blends with PA6. Introduction of pentaerythritol (LTP) and water-bound plasticizer dioctyl phthalate (DPT) into the extrusion reaction system greatly inhibits the evaporation of water required for melamine and cyanuric acid reaction at high temperature (higher than 180 °C), laying a foundation for successful in situ preparation of MCA through reactive processing. XRD and FT-IR measurements indicate that under the effect of pentaerythritol, dioctyl phthalate and water, melamine really reacts with cyanuric acid to in situ form MCA in extrusion process. The reaction degree is close to 100%. A very important finding through SEM is that the in situ formed MCA particles, which were found to have aspect ratio of about 7.5, radial size in the range of 70-300 nm (mostly 70-90 nm) and crystallite size of less than 22 nm, are uniformly dispersed in the matrix PA6 at nanoscale. The in situ formed MCA nanoparticles greatly improve the flame retardancy and the mechanical properties of flame-retarded PA6 materials, and the introduced plasticizer dioctyl phthalate also ameliorates the related impact property. The obtained flame-retarded PA6 materials have good comprehensive performance with flame retardancy UL-94 V-0 rating at 1.6 and 3.2 mm thickness, tensile strength 48.0 MPa, elongation at break 106.3% and Izod notched impact strength 8.92 kJ/m2. Compared with flame-retarded PA6 material with in situ formed MCA, the one prepared through conventional blending of PA6 with commercial MCA product has improved tensile strength but deteriorated impact strength and flame retardancy.  相似文献   
4.
Wood has been treated with guanidine phosphate, guanidine nitrate, guanidine carbonate and guanidine chloride to impart flame retardancy. The samples were subjected to differential thermal analysis (DTA) and thermogravimetry (TG) from ambient temperature to 800°C in air to study their thermal behaviors. From the resulting data, kinetic parameters for different stages of thermal degradation were obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy was found to decrease from 116 to 54 kJ mol–1; the char yield was found to increase from 5.6 to 34.9%, LOI from 18 to 41.5, which indicated that the flame retardancy of treated wood was improved. Effects of the different compounds on the degradation and flammability of wood have also been proposed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
5.
描述了采用密胺树脂和硼酸锌连续双层包覆微胶囊化红磷(MRP)的最新制备方法。采用红外光谱、电子能谱和透射电镜等分析手段对其进行了表征,并证实红磷已被完全包覆。实验数据表明:经包覆的MRP的热稳定性获得了明显改善,吸水率和磷化氢的发生量均大大减少。MRP作为阻燃助剂应用于聚烯烃阻燃材料表现出了良好的阻燃效果。实时红外和热失重测量以及扫描电镜观察表明:其阻燃机制是红磷受热时与树脂反应促进了含磷膨胀炭层的形成,从而提高了材料的热稳定性,碳层起到了隔氧、隔热作用,而且主要在凝聚相中发挥其阻燃作用。  相似文献   
6.
Nanocomposites of polystyrene, high impact polystyrene, acrylonitrile-butadiene-styrene terpolymer, polypropylene, and polyethylene were prepared using a methyl methacrylate oligomerically-modified clay by melt blending and the thermal stability and fire retardancy were studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed morphology, depending on the polymer.  相似文献   
7.
Fire gas toxicity is an essential component of any fire hazard analysis. However, fire toxicity, like flammability, is both scenario and material dependent. A number of different methods exist to assess the fire toxicity, but many of them fail to relate this to a particular fire scenario. Sample thickness alone, in a closed box test such as the NBS Smoke Chamber, is shown to change the fire scenario from well-ventilated to under-ventilated. Data from two flow-through tests, the static tube furnace (NF X 70-100) and the steady state tube furnace (the Purser furnace, BS 7990 and ISO TS 19700) show that there are different patterns of behaviour for different polymers (LDPE, polystyrene, rigid PVC and Nylon 6.6). The predicted toxicities show variation of up to two orders of magnitude with change in fire scenario. They also show change of at least one order of magnitude for different materials in the same fire scenario. Finally, they show that in many cases CO, which is often assumed to be the most, or even the only toxicologically significant fire gas, is of less importance than either HCl, or HCN, when present, and in some cases less important than organo-irritants. Nylon 6.6 shows the highest predicted toxicity, the greatest scenario dependence, and the least sensitivity to different apparatuses, while polystyrene shows the highest sensitivity to the different apparatuses, but the lowest to different fire scenarios. PVC shows high toxicity, mostly due to HCl in the fire effluent, under all fire conditions, and LDPE shows a more progressive increase in toxicity from well-ventilated flaming to both smouldering and under-ventilated flaming.  相似文献   
8.
The oxidative degradation of HET-acid (1,4,5,6,7,7-hexachlorobicyclo [2.2.1] hept-5-en-2, 3-dicarboxylic acid) is studied by the combination of TG, FTIR, MS and GC-MS. The gases evolved during the decomposition of this flame retardant are investigated on-line by FTIR and by MS. Simultaneously the evolved gases are collected by an adsorbent and, after the thermal experiment, desorbed to release the volatile products for identification using GC-MS. The combination of these techniques offers the unambiguous identification of the evolved products as a function of temperature. The main identified products are CO2, H2O, Cl2, HCl, C2Cl4, maleic acid anhydride, HET-acid anhydride, chlorinated cyclic hydrocarbons and chlorinated unsaturated linear hydrocarbons.  相似文献   
9.
The flame retardant effect of newly synthesized phosphorus-containing reactive amine, which can be used both as crosslinking agent in epoxy resins and as a flame retardant, was investigated. The effect of montmorillonite and sepiolite additives on the fire induced degradation was compared to pristine epoxy resin. The effect of combining the organophosphorous amine with clay minerals was also studied. It could be concluded that the synthesized phosphorus-containing amine, TEDAP can substitute the traditional epoxy resin curing agents providing additionally excellent flame retardancy: the epoxy resins flame retarded this way reach 960 °C GWFI value, 33 LOI value and V-0 UL-94 rating - compared to the 550 °C GWFI value, 21 LOI value and “no rate” UL-94 classification of the reference epoxy resin. The peak of heat release was reduced to 1/10 compared to non-flame retarded resin, furthermore a shift in time was observed, which increases the time to escape in case of fire. The flame retardant performance can be further improved by incorporating clay additives: the LOI and the HRR results showed that the optimum of flame retardant effect of clay additives is around 1 mass% filler level in AH-16-TEDAP system. Applying a complex method for mechanical and structural characterization of the intumescent char it was determined that the flame retarded system forms significantly more and stronger char of better uniformity with smaller average bubble size. Incorporation of clay additives (owing to their bubble nucleating activity) results in further decrease in average bubble diameter.  相似文献   
10.
Hyperbranched polyphosphate ester (HPPE) and phenolic melamine (PM) were blended in different ratios with a commercial epoxy resin to obtain a series of flame retardant resins. The thermal decomposition mechanism of their cured products in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The degradation behaviours of epoxy resins containing various flame retardant components were found to be greatly changed. The incorporation of phosphorus and nitrogen compounds improved the thermal stability at elevated temperature. The kinetics of thermal decomposition was evaluated by Kissinger method, Flynn-Wall-Ozawa method and Horowitz-Metzger method. The results showed that the activation energy at lower degree of the degradation decreased by the incorporation of flame retardant components, while increased at higher degree of the degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号