首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   15篇
  国内免费   4篇
化学   103篇
  2023年   5篇
  2022年   2篇
  2021年   7篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   6篇
  2015年   13篇
  2014年   8篇
  2013年   7篇
  2012年   10篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
排序方式: 共有103条查询结果,搜索用时 218 毫秒
1.
Adding perfluoroalkyl (PF) segments to amphiphilic copolymers yields triphilic copolymers with new application profiles. Usually, PF segments are attached as terminal blocks via Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). The purpose of the current study is to design new triphilic architectures with a PF segment in central position. The PF segment bearing bifunctional atom transfer radical polymerization (ATRP) initiator is employed for the fabrication of triphilic poly(propylene oxide)-b-poly(glycerol monomethacrylate)-b-PF-b-poly(glycerol monomethacrylate)-b-poly(propylene oxide) PPO-b-PGMA-b-PF-b-PGMA-b-PPO pentablock copolymers by a combined ATRP and CuAAC reaction approach. Differential scanning calorimetry indicates the PF-initiator to undergo a solid–solid phase transition at 63°C before the final crystal melting at 95°C. This is further corroborated by polarized optical microscopy and X-ray diffraction studies. The PF-initiator could successfully polymerize solketal methacrylate (SMA) under typical ATRP conditions producing well-defined Br-PSMA-b-PF-b-PSMA-Br triblock copolymers that are then converted into PPO-b-PSMA-b-PF-b-PSMA-b-PPO pentablock copolymer via CuAAC reaction. Subsequently, acid hydrolysis of the PSMA blocks afforded water soluble well-defined triphilic pentablock copolymers PPO-b-PGMA-b-PF-b-PGMA-b-PPO with fluorophilic central segment, hydrophilic middle blocks, and lipophilic outer blocks. The triphilic block copolymers could self-assemble, depending upon the preparatory protocol, into spherical and filament-like phase-separated nanostructures as revealed by transmission electron microscopy.  相似文献   
2.
Long Xu  Jiajia Dong 《中国化学》2020,38(4):414-419
The article herein briefly introduces the story of the birth of click chemistry and its evolution after that. A new angle to interpret click reactions was proposed using the “reactivity‐availability‐functionality” trilogy. CuAAC (Copper‐catalyzed azide‐alkyne cycloaddition), the most popular click reaction by far, was revisited along with the thiol‐ene, metal‐free AAC, SuFEx (Sulfur(VI) fluoride exchange) and the lately discovered diazotransfer process. By encountering more and more near‐perfect reactions, click chemistry is evolving and expanding on the fringe of the chemistry and different scientific disciplines, destination unknown.   相似文献   
3.
Abstract

Two new compounds (9 and 10) having a camptothecin (CPT) analog conjugated to the 4β-azido-4-deoxypodophyllotixin analog by untilizing the copper-catalyzed azide-alkyne cycloadditon (CuAAC) reaction, and were evaluated for their cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW480) using the MTT (3-(4,5-dimethyl-thiahiazo-2-yl)-2,5-diphenyltetrazolium bromide) assay. Two novel conjugates shown weak cytotoxicity, compound 10 showed highly potent against HL-60 cell line tested, with IC50 value 17.69?±?0.19?μM. This compound suggested its potential as anticancer agents for further development.

  相似文献   
4.
Owing to their unique broken symmetry, amphiphilic Janus dendrimers and dendons provide fascinating properties for material, biological, pharmaceutical and biomedical applications. The integration of various organometallic moieties into these macromolecules will further offer the opportunity to form complex and intelligent architectures and materials. Here, we report a novel, simple and multifunctional Janus dendron containing redox‐reversible hydrophobic ferrocene (Fc) unit, complexing‐effective 1,2,3‐triazole ligand and biocompatible hydrophilic triethylene glycol termini. Silver and gold nanoparticles were firstly successfully prepared by using the Janus dendron as the reducing agent of Au(III) and Ag(I), and the stabilizer of the corresponding nanoparticles. The redox response of the Fc moiety was then employed to trigger the release of model drug, rhodamine B, encapsulated in supramolecular micelles formed by the self‐assembly of the Janus dendron. Finally, the precise and excellent metal‐complexing ability of the triazole group in this dendron was fully utilized to stabilize a water‐soluble Cu(I) catalyst, forming supramolecular nanoreactors for the catalysis of the copper(I)‐catalyzed azide alkyne cycloaddition click reaction in only water. The multifunctional characteristics of this dendron highlight the potential for organometallic Janus dendrimers and dendrons in the fields of functional materials and nanomedicines.  相似文献   
5.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   
6.
1H NMR and SEC analyses are used to investigate the overall efficiency of Copper Catalyzed Azide Alkyne Cycloaddition (CuAAC) “click” coupling reactions between alkyne‐ and azide‐terminated polymers using polystyrene as a model. Quantitative convolution modeling of the entire molecular weight distribution is applied to characterize the outcomes of the functional polymer synthesis reactions (i.e., by atom transfer radical polymerization), as well as the CuAAC coupling reaction. Incomplete functionality of the azide‐terminated polystyrene (∼92%) proves to be the largest factor compromising the efficacy of the CuAAC coupling reaction and is attributed primarily to the loss of terminal bromide functionality during its synthesis. The efficiency of the SN2 reaction converting bromide to azide was found to be about 99%. After taking into account the influence of non‐functional polymer, we find that, under the reaction conditions used, the efficiency of the CuAAC coupling reaction determined from both techniques is about 94%. These inefficiencies compromise the fidelity and potential utility of CuAAC coupling reactions for the synthesis of hierarchically structured polymers. While CuAAC efficiency is expected to depend on the specific reaction conditions used, the framework described for determining reaction efficiency does provide a means for ultimately optimizing the reaction conditions for CuAAC coupling reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 75–84  相似文献   
7.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
8.
The construction of DNA‐encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA‐compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium‐catalyzed reactions (Suzuki cross‐coupling, Sonogashira cross‐coupling, and copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.  相似文献   
9.
The synthesis of alkyne functionalized bipyridine ruthenium complexes are reported. The improved synthetic approach through application of stable protecting groups prevents formation of possible side products while facilitating purification. By applying copper-catalysed azide-alkyne cycloaddition reactions (CuAAC) pyrene units with flexible alkyl linkers are introduced at the periphery of the complex, opening up various applications including surface immobilization and DNA intercalation. All complexes are characterized structurally as well as photophysically, especially regarding the influence of the introduced alkyne and triazolyl substituents on their photophysical behavior.  相似文献   
10.
The copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC), so‐called “click” reaction, is one of most useful synthetic strategies to connect two polymer chains. 1,2,3‐Triazole ring (TA) produced by the click reaction has good thermal and chemical stability. However, we observed that block copolymers synthesized by the click reaction showed thermal degradation to give homopolymers when they are thermally annealed at high temperature, which is required for obtaining equilibrium microdomain structure. To investigate the origin of thermal instability of block copolymers, we synthesized model polystyrenes (PSs) using systematically designed bi‐functional atom transfer radical polymerization (ATRP) initiators containing TA. PS including both ester and TA groups showed thermal decomposition at relatively low temperature (e.g., 140 °C). MALDI‐TOF analysis clearly demonstrated that the cleavage site is the ester group adjacent to TA. We also found that the bromine group located at the polymer chain end plays an important role in pyrolysis of ester groups at low temperature. The pyrolysis occurs by syn‐elimination of the ester group. This result implies that the phase behavior of block copolymer synthesized by click reaction should be carefully investigated when high temperature thermal annealing is required. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 427–436  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号