首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   49篇
  2024年   1篇
  2023年   44篇
  2022年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有49条查询结果,搜索用时 250 毫秒
1.
Several mechanochemically heated processes have been published in recent years. However, precise control over the mechanochemical catalysed coupling reactions remained elusive. A recent report from Leitch, Browne and co-workers demonstrated how a programmable jar heater manifold delivers an efficient methodology for the Suzuki–Miyaura-type cross coupling reaction of aryl sulfamates and aryl boronic acid species. This methodology can be readily upscaled 200-fold using twin-screw extrusion methodologies.  相似文献   
2.
Complex [(DIPePBDI)Ca]2(C6H6), with a C6H62− dianion bridging two Ca2+ ions, reacts with benzene to yield [(DIPePBDI)Ca]2(biphenyl) with a bridging biphenyl2− dianion (DIPePBDI=HC[C(Me)N-DIPeP]2; DIPeP=2,6-CH(Et)2-phenyl). The biphenyl complex was also prepared by reacting [(DIPePBDI)Ca]2(C6H6) with biphenyl or by reduction of [(DIPePBDI)CaI]2 with KC8 in presence of biphenyl. Benzene-benzene coupling was also observed when the deep purple product of ball-milling [(DIPPBDI)CaI(THF)]2 with K/KI was extracted with benzene (DIPP=2,6-CH(Me)2-phenyl) giving crystalline [(DIPPBDI)Ca(THF)]2(biphenyl) (52 % yield). Reduction of [(DIPePBDI)SrI]2 with KC8 gave highly labile [(DIPePBDI)Sr]2(C6H6) as a black powder (61 % yield) which reacts rapidly and selectively with benzene to [(DIPePBDI)Sr]2(biphenyl). DFT calculations show that the most likely route for biphenyl formation is a pathway in which the C6H62− dianion attacks neutral benzene. This is facilitated by metal-benzene coordination.  相似文献   
3.
Transition-metal-catalyzed asymmetric carbon−carbon bond formation to forge phosphonates with an α-chiral carbon center through C(sp3)−C(sp3) and C(sp2)−C(sp3) couplings has been successful. However, the enantioselective C(sp)−C(sp3) coupling has not yet been disclosed. Reported herein is an unprecedented enantioconvergent cross-coupling of alkynyl bromides and α-bromo phosphonates to deliver chiral α-alkynyl phosphonates.  相似文献   
4.
Alanine is widely employed for synthesizing polymers, pharmaceuticals, and agrochemicals. Electrocatalytic coupling of biomass molecules and waste nitrate is attractive for the nitrate removal and alanine production under ambient conditions. However, the reaction efficiency is relatively low due to the activation of the stable substrates, and the coupling of two reactive intermediates remains challenging. Herein, we realize the integrated tandem electrochemical-chemical-electochemical synthesis of alanine from the biomass-derived pyruvic acid (PA) and waste nitrate (NO3) catalyzed by PdCu nano-bead-wires (PdCu NBWs). The overall reaction pathway is demonstrated as a multiple-step catalytic cascade process via coupling the reactive intermediates NH2OH and PA on the catalyst surface. Interestingly, in this integrated tandem electrochemical-chemical-electrochemical catalytic cascade process, Cu facilitates the electrochemical reduction of nitrate to NH2OH intermediates, which chemically couple with PA to form the pyruvic oxime, and Pd promotes the electrochemical reduction of pyruvic oxime to the desirable alanine. This work provides a green strategy to convert waste NO3 to wealth and enriches the substrate scope of renewable biomass feedstocks to produce high-value amino acids.  相似文献   
5.
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.  相似文献   
6.
The selective transition-metal catalyzed C−F bond functionalization of inexpensive industrial fluorochemicals represents one of the most attractive approaches to valuable fluorinated compounds. However, the selective C(sp2)−F bond carbofunctionalization of refrigerant hydrofluoroolefins (HFOs) remains challenging. Here, we report a nickel-catalyzed selective C(sp2)−F bond alkylation of HFO-1234yf with alkylzinc reagents. The resulting 2-trifluoromethylalkenes can serve as a versatile synthon for diversified transformations, including the anti-Markovnikov type hydroalkylation and the synthesis of bioactive molecule analogues. Mechanistic studies reveal that lithium salt is essential to promote the oxidative addition of Ni0(Ln) to the C−F bond; the less electron-rich N-based ligands, such as bipyridine and pyridine-oxazoline, feature comparable or even higher oxidative addition rates than the electron-rich phosphine ligands; the strong σ-donating phosphine ligands, such as PMe3, are detrimental to transmetallation, but the less electron-rich and bulky N-based ligands, such as pyridine-oxazoline, facilitate transmetallation and reductive elimination to form the final product.  相似文献   
7.
Brett P. Fors 《Tetrahedron》2009,65(33):6576-1362
A catalyst based on a new biarylphosphine ligand (3) for the Pd-catalyzed cross-coupling reactions of amides and aryl chlorides is described. This system shows the highest turnover frequencies reported to date for these reactions, especially for aryl chloride substrates bearing an ortho substituent. An array of amides and aryl chlorides were successfully reacted in good to excellent yields.  相似文献   
8.
Transition-metal catalyzed enantioconvergent cross-coupling of tertiary alkyl halides with ammonia offers a rapid avenue to chiral unnatural α,α-disubstituted amino acids. However, the construction of chiral C−N bonds between tertiary-carbon electrophiles and nitrogen nucleophiles presented a great challenge owing to steric congestion. We report a copper-catalyzed enantioconvergent radical C−N cross-coupling of alkyl halides with sulfoximines (as ammonia surrogates) under mild conditions by employing a chiral anionic N,N,N-ligand with a long spreading side arm. An array of α,α-disubstituted amino acid derivatives were obtained with good efficiency and enantioselectivity. The synthetic utility of the strategy has been showcased by the elaboration of the coupling products into different chiral α-fully substituted amine building blocks.  相似文献   
9.
Light olefins are abundantly manufactured in the petroleum industry and thus represent ideal starting materials for modern chemical synthesis. Selective and divergent transformations of feedstock light olefins to value-added chemicals are highly sought-after but remain challenging. Herein we report an exceptionally regioselective carbonickelation of light alkenes followed by in situ trapping with three types of nucleophiles, namely a reductant, base, or Grignard reagent. This protocol enables efficient 1,2-hydrofunctionalization, dicarbofunctionalization, and branched-selective Heck-type cross-coupling of light alkenes with aryl and alkenyl reagents to streamline access to diverse alkyl arenes and complex alkenes. Harnessing bulky N-heterocyclic carbene ligands with acenaphthyl backbones for nickel catalysts is crucial to attain high reactivity and selectivity. This strategy provides a rare, modular, and divergent platform for upgrading feedstock alkenes and is expected to find broad applications in medicinal chemistry and industrial processes.  相似文献   
10.
Incorporating enzymatic reactions into natural product synthesis can significantly improve synthetic efficiency and selectivity. In contrast to the increasing applications of biocatalytic functional-group interconversions, the use of enzymatic C−C bond formation reactions in natural product synthesis is underexplored. Herein, we report a concise and efficient approach for the synthesis of [7.7]paracyclophane natural products, a family of polyketides with diverse biological activities. By using enzymatic Friedel–Crafts alkylation, cylindrocyclophanes A and F and merocyclophanes A and D were synthesized in six to eight steps in the longest linear sequence. This study demonstrates the power of combining enzymatic reactions with contemporary synthetic methodologies and provides opportunities for the structure–activity relationship studies of [7.7]paracyclophane natural products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号