首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   5篇
  国内免费   1篇
化学   59篇
物理学   1篇
  2023年   10篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2006年   1篇
  2003年   2篇
  1998年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
This paper describes the measurement of the binding affinities of two bifunctional RNA aptamers to their respective ligands. The aptamers comprise either a theophylline or malachite green binding sequence fused to a streptavidin binding sequence. These bifunctional aptamers are shown to bind simultaneously to both the small ligand and to streptavidin whether in free solution or on gold surfaces. Binding isotherms for both interactions were measured by different physiochemical techniques: surface plasmon resonance, fluorescence spectroscopy and dynamic light scattering. Both qualitatively and quantitatively there is little difference in binding affinities between the bifunctional aptamers and their monofunctional components. The respective Kd values for streptavidin binding in the monofunctional aptamer and in the theophylline bifunctional aptamer were 12 nM and 65 nM, respectively whilst the Kd values for theophylline binding in the monofunctional aptamer and the streptavidin bifunctional aptamer were 300 nM and 120 nM. These results are consistent with treating each aptamer sequence as a module that can be combined with others without significant loss of function. This allows for the use of streptavidin based immobilization strategies without either the cost of biotinylated dNTPs or the variable yields associated with the chemical biotinylation of RNA.  相似文献   
2.
High‐affinity aptamers for important signal transduction proteins, i.e. Cdc42‐GTP, p21‐activated kinase1 (PAK1) and MRCK (myotonic dystrophy kinase‐related Cdc42‐binding kinase) α were successfully selected in the low micro‐ to nanomolar range using non‐systematic evolution of ligands by exponential enrichment (SELEX) with at least three orders of magnitude enhancement from their respective bulk affinity of naïve DNA library. In the non‐SELEX procedure, CE was used as a highly efficient affinity method to select aptamers for the desired molecular target through a process that involved repetitive steps of partitioning, known as non‐equilibrium CE of equilibrium mixtures with no PCR amplification between successive steps. Various non‐SELEX conditions including the type, concentration and pH of the run buffer were optimized. Other considerations such as salt composition of selection buffer, protein concentration and sample injection size were also studied for high stringency during selection. After identifying the best enriched aptamer pool, randomly selected clones from the aptamer pool were sequenced to obtain the individual DNA sequences. The dissociation constants (Kd) of these sequences were in the low micromolar to nanomolar range, indicating high affinity to the respective proteins. The best binders were also subjected to sequence alignment to generate a phylogenetic tree. No significant consensus region based on approximately 50 sequences for each protein was observed, suggesting the high efficiency of non‐SELEX for the selection of numerous unique sequences with high selectivity.  相似文献   
3.
Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre‐established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side‐by‐side comparison is also presented.  相似文献   
4.
Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described.  相似文献   
5.
The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.  相似文献   
6.
L-lactate is a key metabolite indicative of physiological states, glycolysis pathways, and various diseases such as sepsis, heart attack, lactate acidosis, and cancer. Detection of lactate has been relying on a few enzymes that need additional oxidants. In this work, DNA aptamers for L-lactate were obtained using a library-immobilization selection method and the highest affinity aptamer reached a Kd of 0.43 mM as determined using isothermal titration calorimetry. The aptamers showed up to 50-fold selectivity for L-lactate over D-lactate and had little responses to other closely related analogs such as pyruvate or 3-hydroxybutyrate. A fluorescent biosensor based on the strand displacement method showed a limit of detection of 0.55 mM L-lactate, and the sensor worked in 90 % serum. Simultaneous detection of L-lactate and D-glucose in the same solution was achieved. This work has broadened the scope of aptamers to simple metabolites and provided a useful probe for continuous and multiplexed monitoring.  相似文献   
7.
Fluorescent light-up RNA aptamers (FLAPs) such as Spinach or Mango can bind small fluorogens and activate their fluorescence. Here, we adopt a switching mechanism otherwise found in riboswitches and use it to engineer switchable FLAPs that can be activated or repressed by trigger oligonucleotides or small metabolites. The fluorophore binding pocket of the FLAPs comprises guanine (G) quadruplexes, whose critical nucleotides can be sequestered by corresponding anti-FLAP sequences, leading to an inactive conformation and thus preventing association with the fluorophore. We modified the FLAPs with designed toehold hairpins that carry either an anti-FLAP or an anti-anti-FLAP sequence within the loop region. The addition of an input RNA molecule triggers a toehold-mediated strand invasion process that refolds the FLAP into an active or inactive configuration. Several of our designs display close-to-zero leak signals and correspondingly high ON/OFF fluorescence ratios. We also modified purine aptamers to sequester a partial anti-FLAP or an anti-anti-FLAP sequence to control the formation of the fluorogen-binding conformation, resulting in FLAPs whose fluorescence is activated or deactivated in the presence of guanine or adenine. We demonstrate that switching modules can be easily combined to generate FLAPs whose fluorescence depends on several inputs with different types of input logic.  相似文献   
8.
《Ultrasonics sonochemistry》2014,21(4):1482-1488
In this study, we demonstrated the feasibility of targeted and ultrasound-triggered drug delivery using liposomes co-modified with single stranded DNA aptamers that recognized platelet-derived growth factor receptors (PDGFRs) as targeting ligands for breast cancer cells and poly(NIPMAM-co-NIPAM) as the thermosensitive polymer (TSP) to sensitize these liposomes to high temperature. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation for 30 s at 0.5 W/cm2 as well as the case under incubation for 5 min at 42 °C. Ultrasound-triggered calcein release from TSP liposomes was due to an increased local temperature, resulting from cavitation bubble collapse induced by ultrasound, and not due to an increase in the bulk medium temperature. Liposomes modified with PDGFR aptamers (APT liposomes) bound to MDA-MB-231 human breast cancer cells through PDGFR aptamers; however, they did not bind to primary human mammary epithelial cells (HMECs). The binding of APT liposomes was greatest for MDA-MB-231 cells, followed by MCF-7, WiDr, and HepG2 cancer cells. In a cell injury assay using doxorubicin (DOX)-loaded APT/TSP liposomes and ultrasound irradiation, cell viability of MDA-MB-231 at 24 h after ultrasound irradiation (1 MHz for 30 s at 0.5 W/cm2) with DOX-loaded APT/TSP liposomes was 60%, which was lower than that with ultrasound irradiation and DOX-loaded TSP liposomes or with DOX-loaded APT/TSP liposomes alone.  相似文献   
9.
《Analytical letters》2012,45(1):140-151
Abstract

A microplate-based sandwich assay for the determination of α-human thrombin (HTb) was developed. Fluorescein-modified 29-mer thrombin binding aptamer (FAM-TBA29) and biotinylated 15-mer thrombin binding aptamer (Bio-TBA15) reacting with different exosites of HTb were used as the biorecognition components in the assay. FAM-TBA29 (capture aptamer) was immobilized using its interaction with anti-fluorescein antibody adsorbed on the microplate surface. As a sensitive signaling system, a combination of Bio-TBA15 and streptavidin-polyHRP conjugate was used. Under the optimized conditions, the detection limit for HTb was 1.4?nM; this value was the same in both the colorimetric and the chemiluminescent assays. The replacement of colorimetry for HRP measurement with chemiluminescence increased the assay sensitivity from 0.06 to 1.7?×?106?nM?1 that clearly demonstrated advantage of the latter approach.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号