全文获取类型
收费全文 | 267篇 |
国内免费 | 1篇 |
完全免费 | 225篇 |
专业分类
物理学 | 493篇 |
出版年
2019年 | 5篇 |
2018年 | 13篇 |
2017年 | 19篇 |
2016年 | 8篇 |
2015年 | 19篇 |
2014年 | 32篇 |
2013年 | 23篇 |
2012年 | 31篇 |
2011年 | 44篇 |
2010年 | 40篇 |
2009年 | 43篇 |
2008年 | 42篇 |
2007年 | 43篇 |
2006年 | 34篇 |
2005年 | 33篇 |
2004年 | 23篇 |
2003年 | 13篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有493条查询结果,搜索用时 62 毫秒
1.
2.
利用大角重位点阵模型建立了AZ91镁合金α相[0001]对称倾斜晶界原子结构模型,应用实空间的连分数方法计算了Mg合金的总结构能,合金元素引起的环境敏感镶嵌能及原子间相互作用能,讨论了主要合金元素Al及Bi,Sb在AZ91中的合金化行为.计算结果表明,Al,Bi,Sb固溶于α相内或晶界区使总结构能都降低,起到固溶强化作用;合金元素在AZ91α相内趋于均匀分布,在晶界区易占位于三角椎上部.AZ91镁合金中加入Bi或Sb时,Bi或Sb比Al容易偏聚于晶界,从而抑制了Al在晶界的偏聚,促进基体中连续的Mg17Al12相的析出,提高AZ91合金室温性能; AZ91合金中(α相内和晶界区)主要合金元素Al和微加元素Bi,Sb都能够形成有序相Mg17Al12,Mg3Bi2或Mg3Sb2,且在晶界区形成的量大.Bi,Sb加入AZ91合金中,由于Bi,Sb抑制Al在晶界的偏聚,晶界区主要析出相为Mg3Bi2或Mg3Sb2,提高镁合金高温性能. 相似文献
3.
线阵CCD的光谱测量 总被引:10,自引:4,他引:6
用线阵CCD作为光栅光谱仪的接收器件,除了可以对光谱的波长进行测量外,还可以对光谱的波形进行比较、分析.而光谱的波形又与波长、积分时间、入射狭缝宽度、衍射角、光源偏离光轴等因素有关,本文分析并研究了这些因素对光谱测量结果的影响. 相似文献
4.
激光雷达信号大气衰减效应 总被引:9,自引:1,他引:8
激光雷达信号在大气中传输时,大气中的气体分子和大气气溶胶粒子、尘埃、雨等对激光信号的吸收和散射导致光信号能量的衰减是影响激光雷达信号传输的重要因素。另外,由于大气密度分面目 不均匀导致激光沿光路上的折射,大气湍流效应导致光束横截面上能量分布起伏、光束扩展和漂移等,这些对激光雷光信号的传输产生一定的影响。本文对激光在大气中传输的各种能量衰减机制进行分析和讨论,为激光雷达系统的设计提供理论依据。 相似文献
5.
6.
7.
设计了一种新型的头盔投影光学系统,解决了头盔系统中大视场和双目实现之间的设计矛盾,且有较小的重量和尺寸.系统的特性参量为:视场角60°,有效焦距30 mm,出瞳距离25 mm,出瞳直径12 mm.该系统由折/衍混合双高斯镜头、半透半反镜和回射屏组成.像差分析结果表明,系统的最大像散为0.27 mm,垂轴色差小于2.7 μm,畸变小于3.8%,最小分辨角为0.5 mrad,成像质量高. 相似文献
8.
采用脉冲激光沉积法在倾斜LaAlO3衬底上制备了Ag掺杂的La0.67Pb0.33MnO3(LPMO)系列薄膜,发现该类薄膜中有激光感生热电电压(LITV)效应.随着掺Ag量x(x为Ag的质量与LPMO的质量之比)从0.00增加到0.10,LPMO薄膜中的LITV信号的响应时间先递减后递增,但始终小于未掺Ag的薄膜,掺Ag量x=0.06时响应时间最小.研究发现LPMO薄膜存在一个最佳厚度,在这一厚度下可使得LITV信号的峰值电压、响应时间分别达到最大和最小.与相同掺Ag量的La0.67Ca0.33MnO3薄膜相比,LPMO薄膜中的LITV信号有更小的响应时间. 相似文献
9.
10.
利用大角重位点阵模型建立了Mg合金[0001]对称倾斜晶界模型,应用实空间的连分数方法计算了杂质在晶界的偏聚能,杂质原子间相互作用能和不同体系的费米能级,讨论了杂质在晶界的偏聚行为,杂质间的相互作用与有序化的关系及杂质对镁合金腐蚀性能影响的物理本质. 计算结果表明,杂质原子偏聚于晶界,且主要偏聚于晶界的压缩区;杂质原子间相互排斥,因此在晶界区形成有序相;费米能级与材料的腐蚀电位存在这样的关系:材料的费米能级越高,其腐蚀电位就越低,容易被腐蚀,相反费米能级低,其腐蚀电位就高,不容易腐蚀. 体系中成分不同区域的费米能级差导致电子从费米能级高的区域流向费米能级低的区域,正是费米能级差构成了镁合金电化学腐蚀的电动势. 相似文献