首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
物理学   2篇
  2022年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
杨孝森  曹阳  翟云佳 《中国物理 B》2022,31(1):10308-010308
We investigate novel features of three-dimensional non-Hermitian Weyl semimetals,paying special attention to the unconventional bulk-boundary correspondence.We use the non-Bloch Chern numbers as the tool to obtain the topological phase diagram,which is also confirmed by the energy spectra from our numerical results.It is shown that,in sharp contrast to Hermitian systems,the conventional(Bloch)bulk-boundary correspondence breaks down in non-Hermitian topological semimetals,which is caused by the non-Hermitian skin effect.We establish the non-Bloch bulk-boundary correspondence for non-Hermitian Weyl semimetals:the topological edge modes are determined by the non-Bloch Chern number of the bulk bands.Moreover,these topological edge modes can manifest as the unidirectional edge motion,and their signatures are consistent with the non-Bloch bulk-boundary correspondence.Our work establishes the non-Bloch bulk-boundary correspondence for non-Hermitian topological semimetals.  相似文献   
2.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号