排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
4.
针对高光谱图像目标识别与分类的应用背景,提出了一种基于快速独立成分分析的高光谱图像目标分割算法.通过引入虚拟维数对图像中的目标端元数量进行估计,利用基于非监督正交子空间投影的异常端元提取算法自动获取目标端元光谱,并将其作为快速独立成分分析的初始混合矩阵.采用最小噪声分量变换对原始数据进行降维,利用快速独立成分分析从降维后的主成分中依次提取出图像中的独立分量.最后,对各独立分量进行恒虚警率检测与形态学滤波,从而得到最终的目标分割结果.对AVIRIS型高光谱图像的实验结果表明,该方法可有效探测出图像中的目标,并可获得较好的分割结果. 相似文献
5.
星载高光谱图像的有效压缩已经成为高光谱遥感领域亟待解决的难题。分布式信源编码具有较低的编码复杂度与良好的抗误码性,在高光谱图像压缩领域具有广阔的应用前景。提出了一种基于多元陪集码的高光谱图像分布式近无损压缩算法。根据多元陪集码的Slepian-Wolf无损编码的压缩过程,提出了面向高光谱图像分布式近无损压缩的最优量化方案,使得高光谱图像在给定目标码率条件下的失真达到最小,在此基础上对量化值进行Slepian-Wolf无损编码,从而实现了高光谱图像的分布式近无损压缩。实验结果表明,与典型的传统算法相比,该算法取得了较好的近无损压缩性能和较低的编码复杂度。 相似文献
1