首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   82篇
  国内免费   29篇
化学   1047篇
晶体学   13篇
力学   65篇
综合类   1篇
数学   98篇
物理学   383篇
  2023年   11篇
  2021年   17篇
  2020年   28篇
  2019年   36篇
  2018年   17篇
  2017年   10篇
  2016年   35篇
  2015年   33篇
  2014年   46篇
  2013年   61篇
  2012年   111篇
  2011年   138篇
  2010年   71篇
  2009年   67篇
  2008年   108篇
  2007年   76篇
  2006年   69篇
  2005年   88篇
  2004年   62篇
  2003年   50篇
  2002年   42篇
  2001年   41篇
  2000年   29篇
  1999年   18篇
  1998年   8篇
  1997年   19篇
  1996年   26篇
  1995年   15篇
  1994年   24篇
  1993年   30篇
  1992年   24篇
  1991年   17篇
  1990年   12篇
  1989年   15篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   18篇
  1984年   17篇
  1983年   9篇
  1982年   6篇
  1981年   10篇
  1979年   7篇
  1978年   13篇
  1977年   3篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1965年   2篇
  1939年   2篇
排序方式: 共有1607条查询结果,搜索用时 31 毫秒
1.
Indeno[1,2‐b]fluorene‐based [2,2]cyclophanes with 4n/4n and 4n/[4n+2] π‐electron systems were prepared, and their structures were identified by X‐ray crystallography. With short π–π distances around 3.0 Å, [2.2](5,11)indeno[1,2‐b]fluorenophane and its precursor [2.2](5,11)indeno[1,2‐b]fluorene‐6,12‐dionophane exhibit remarkable transannular interactions, leading to their unusual electrochemical and photophysical properties. With the aid of femtosecond transient absorption spectroscopy, the transition from the monomeric excited state to the redshifted H‐type dimeric state was first observed, correlating to the calculated excitonic energy splitting and the steady‐state absorption spectra induced by charge‐transfer‐mediated superexchange interaction.  相似文献   
2.
Alkaline metals are an ideal negative electrode for rechargeable batteries. Forming a fluorine‐rich interphase by a fluorinated electrolyte is recognized as key to utilizing lithium metal electrodes, and the same strategy is being applied to sodium metal electrodes. However, their reversible plating/stripping reactions have yet to be achieved. Herein, we report a contrary concept of fluorine‐free electrolytes for sodium metal batteries. A sodium tetraphenylborate/monoglyme electrolyte enables reversible sodium plating/stripping at an average Coulombic efficiency of 99.85 % over 300 cycles. Importantly, the interphase is composed mainly of carbon, oxygen, and sodium elements with a negligible presence of fluorine, but it has both high stability and extremely low resistance. This work suggests a new direction for stabilizing sodium metal electrodes via fluorine‐free interphases.  相似文献   
3.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   
4.
Diindeno-fused dibenzo[a,h]anthracene 6 and diindeno-fused dibenzo[c,l]chrysene 9 contain the key moieties 1,4-quinodipropene (1,4-QDP) and 2,6-naphthoquinodipropene (2,6-NQDP), respectively, and they both have an open-shell singlet ground state. The latter compound exhibits a strong biradical character and interesting properties, including a low ΔET−S (2.44 kcal mol−1), a small HOMO–LUMO gap (1.06 eV), a wide photoabsorption range (250–1172 nm), and a large two-photon absorption cross-section (σ=1342±56 GM). This work verifies that 6 has a slightly larger HOMO–LUMO gap and ΔET−S than its helical isomer diindeno[2,1-f:1′,2′-j]picene (DIP), but is a much stronger two-photon absorber, verifying the important effect of geometry on the photophysical properties.  相似文献   
5.
This paper describes the effect of solvent-induced synthetic routes of aluminium pendant oxazoline-amido-phenolate complexes. Treatment of ligand precursor L with AlMe3 in a 1:1 ratio in diethyl ether yielded the four-coordinated complex (LAlMe)2. Reaction of ligand precursor L with AlMe3 in a 1:2 ratio in hexane generated the four-coordinated complex L(AlMe2)2. A novel transformation mode occurred from L(AlMe2)2 to (LAlMe)2 when using diethyl ether or tetrahydrofuran as solvent. A density functional theory computational study also supports a plausible mechanism. All results were supported by spectroscopic data and in agreement with single-crystal X-ray diffraction structural analysis.  相似文献   
6.
Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations.  相似文献   
7.
Self-assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid-functionalized porphyrin derivatives, namely AC-1, AC-3, and AC-5, and present, for the first time, a strategy to exploit the large π-moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron-rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double-anchored AC-3 and AC-5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC-5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.  相似文献   
8.
A simple and easy‐to‐implement method is presented for the study of time‐dependent reaction dynamics by propagating an ensemble of transmitted quantum trajectories. During the trajectory evolution, reflected trajectories are gradually removed and all the remaining trajectories represent the transmitted subensemble. The removal process of reflected trajectories avoids numerical instabilities arising from node formation in the reactant region, and allows stable long‐time propagation of transmitted trajectories. This method is applied to a two‐dimensional model chemical reaction. Excellent computational results are obtained for the time‐dependent reaction probabilities evaluated by the time integration of the probability flux. © 2014 Wiley Periodicals, Inc.  相似文献   
9.
Trace quantities of hydrogen‐bonding impurities in otherwise highly purified and dried glassy hydrocarbon matrices at 77 K can modify the relative triplet state energy levels, and hence the photophysical properties of two aromatic ketones, xanthone and chromone, to the extent that the intrinsic spectroscopic properties are obscured. The intrinsic spectroscopic properties of each are revealed in multicrystalline n‐alkane Shpol'skii matrices, and also can be observed in rigorously purified and dried hydrocarbon glasses at 77 K. The extreme sensitivity to stoichiometric, and even substoichiometric quantities of hydrogen‐bonding impurities arises from the near‐degeneracy of the two lowest‐lying triplet states, and the sensitive nature of the n→π* blueshift phenomena to specific hydrogen‐bonding interactions.  相似文献   
10.
ZnO is a defect‐governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect‐related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22 % relative to the bare nanotubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号