首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   33篇
  国内免费   3篇
化学   535篇
晶体学   2篇
力学   12篇
数学   115篇
物理学   259篇
  2021年   5篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   8篇
  2016年   18篇
  2015年   19篇
  2014年   18篇
  2013年   44篇
  2012年   35篇
  2011年   45篇
  2010年   33篇
  2009年   25篇
  2008年   40篇
  2007年   31篇
  2006年   35篇
  2005年   32篇
  2004年   20篇
  2003年   32篇
  2002年   21篇
  2001年   22篇
  2000年   23篇
  1999年   11篇
  1998年   7篇
  1997年   16篇
  1996年   16篇
  1995年   14篇
  1994年   12篇
  1993年   15篇
  1992年   17篇
  1991年   17篇
  1990年   23篇
  1989年   14篇
  1988年   10篇
  1987年   9篇
  1986年   13篇
  1985年   9篇
  1984年   11篇
  1983年   11篇
  1982年   15篇
  1981年   12篇
  1980年   6篇
  1979年   13篇
  1978年   19篇
  1977年   12篇
  1976年   17篇
  1975年   7篇
  1974年   7篇
  1973年   7篇
  1970年   6篇
排序方式: 共有923条查询结果,搜索用时 78 毫秒
1.
2.
3.
A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mm ?1Fes?1 at 60 MHz, which is nearly double the r2 relaxivity of Sinerem®.  相似文献   
4.
Nonlinear least-squares regression is a valuable tool for gaining chemical insights into complex systems. Yet, the success of nonlinear regression as measured by residual sum of squares (RSS), correlation, and reproducibility of fit parameters strongly depends on the availability of a good initial solution. Without such, iterative algorithms quickly become trapped in an unfavorable local RSS-minimum. For determining an initial solution, a high-dimensional parameter space needs to be screened, a process that is very time-consuming but can be parallelized. Another advantage of parallelization is equally important: After determining initial solutions, the used processors can be tasked to each optimize an initial guess. Even if several of these optimizations become stuck in a shallow local RSS-minimum, other processors continue and improve the regression outcome. A software package for parallel processing-based constrained nonlinear regression (RegressionLab) has been developed, implemented, and tested on a variety of hardware configurations. As proof-of-principle, microalgae to environment interactions have been studied by infrared attenuated total reflection spectroscopy. Additionally, light microscopy has been used to monitor cell production. It is shown that spectroscopic data sets with 10,000?s of data points and >1000 nonlinear model parameters as well as imaging data with 100,000s of data points and >2000 nonlinear model parameters may now be investigated by constrained nonlinear regression. Acceleration factors of up to 8.1 have been obtained which is of high practical relevance when computations take weeks on single-processor machines. Solely using parallel processing, the RSS values may be improved up to a factor of 5.5.  相似文献   
5.
Homotopy perturbation method is used to extend the approximate analytical solutions of non-linear reaction equations describing enzyme kinetics for combinations of parameters for which solutions obtained in previous works are not valid. Also, by constructing a new homotopy, alternative approximate analytical expressions for substrate, substrate-enzyme complex and product concentrations are found. These first-order approximate solutions give more accurate results than the second-order approximations derived in previous works.  相似文献   
6.
Thin films (monolayer and bilayer) of cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) were shear aligned by the swelling and deswelling of a crosslinked PDMS pad that was physically adhered to the film during solvent vapor annealing. The nanostructures formed by self‐assembly were exposed to ultraviolet‐ozone to partially oxidize the PDMS, followed by calcination in air at 500 °C. In this process, the PS segments were fully decomposed, while the PDMS yielded silica nanostructures. The highly aligned PDMS cylinders were thus deposited as silica nanolines on the silicon substrate. Using a bilayer film, the center‐to‐center distance of these features were effectively halved from 38 to 19 nm. Similarly, by sequential shear‐alignment of two distinct layers, a rhombic array of silica nanolines was fabricated. This methodology provides a facile route to fabricating complex topographically patterned nanostructures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1058–1064  相似文献   
7.
8.
Dynamic crosslinks formed by thermoreversible associations provide an energy dissipation mechanism to toughen hydrogels. However, the details of the organization of these crosslinks impact the hydrogel properties through constraints on the network chain conformation. The physical crosslinks generated by hydrophobic association of the 2‐(N‐ethylperfluorooctane‐sulfonamido)ethyl methacrylate (FOSM) groups in a random copolymer of N,N‐dimethylacrylamide (DMA) and FOSM provide a simple system to investigate how the hydrogel structure (as determined from small angle neutron scattering impacts the mechanical properties of the hydrogel. The initial hydration of the copolymer at 25 °C leads to a kinetically trapped structure with large‐scale heterogeneities. Heating the hydrogel at 60 °C, which is above the glass transition temperature for the FOSM domains, allows the hydrogel structure to rearrange to reduce the density of network defects and the structural heterogeneities. That effectively increases the crosslink density of the network, which stiffens the hydrogel and decreases the swelling at equilibrium at 25 °C. The processing history determines how the hydrophobes aggregate to form the physically crosslinked network, whose structure defines the mechanical properties of these hydrogels. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1036–1044  相似文献   
9.
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
10.
A novel approach to locate, identify and refine positions and whole areas of cell structures based on elemental contents measured by X‐ray fluorescence microscopy is introduced. It is shown that, by initializing with only a handful of prototypical cell regions, this approach can obtain consistent identification of whole cells, even when cells are overlapping, without training by explicit annotation. It is robust both to different measurements on the same sample and to different initializations. This effort provides a versatile framework to identify targeted cellular structures from datasets too complex for manual analysis, like most X‐ray fluorescence microscopy data. Possible future extensions are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号