首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4994篇
  免费   304篇
  国内免费   31篇
化学   3797篇
晶体学   44篇
力学   205篇
数学   389篇
物理学   894篇
  2023年   23篇
  2022年   32篇
  2021年   100篇
  2020年   126篇
  2019年   111篇
  2018年   82篇
  2017年   83篇
  2016年   182篇
  2015年   153篇
  2014年   213篇
  2013年   345篇
  2012年   455篇
  2011年   442篇
  2010年   291篇
  2009年   246篇
  2008年   391篇
  2007年   320篇
  2006年   318篇
  2005年   269篇
  2004年   247篇
  2003年   174篇
  2002年   163篇
  2001年   96篇
  2000年   60篇
  1999年   34篇
  1998年   22篇
  1997年   19篇
  1996年   40篇
  1995年   26篇
  1994年   32篇
  1993年   31篇
  1992年   19篇
  1991年   17篇
  1990年   13篇
  1989年   8篇
  1988年   8篇
  1987年   11篇
  1986年   3篇
  1985年   15篇
  1984年   12篇
  1983年   14篇
  1982年   9篇
  1981年   9篇
  1980年   9篇
  1979年   5篇
  1978年   5篇
  1977年   9篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
排序方式: 共有5329条查询结果,搜索用时 203 毫秒
1.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
2.
This paper addresses the problem of global robust fault accommodation tracking for a class of uncertain nonlinear systems with unknown powers and actuator faults. It is assumed that the powers of the concerned system are unknown time-varying functions, all system nonlinearities are unknown, and unknown actuator faults depend on the time-varying power of a control input. A fault accommodation state-feedback controller is explicitly constructed based on the nonlinear error transformation technique using time-varying performance functions. Global tracking with the preselected performance bounds is established in the presence of unknown time-varying powers and unexpected actuator faults. Different from the previous results dealing with the problem of unknown time-varying powers, the proposed tracking strategy does not require the knowledge of the bounds of the time-varying powers and the nonlinear bounding functions of system nonlinearities. An underactuated mechanical system is simulated to validate the effectiveness of the proposed theoretical approach.  相似文献   
3.
Polypeptides have received noticeable attention in the biomedical field due to their structural versatility and biomimetic properties. Particularly, polypeptides that are responsive to biological stimuli, such as mildly acidic extracellular and intracellular conditions, have great potential as delivery carriers for therapeutics. However, synthesis of high-molecular-weight acid-labile peptides is often daunting due to highly restrictive polymerization conditions and limitations in preserving acid-degradable functional groups. For instance, the popular N-carboxyanhydride (NCA) ring-opening polymerization (ROP) is efficient, but acid-labile NCA monomers are difficult to synthesize and store. In this study, acid-labile polypeptides with high molecular weights were synthesized under mild, permissive conditions using carboxylated urethane derivative monomers which are stable for ease of handling. The polymerization was successful in various organic solvents at room temperature, and did not require additional energy or initiation to drive the formation of NCA intermediates. The polymerization was also rapid enough to be independent of inert atmosphere. The strategy explored here to synthesize high-molecular-weight acid-labile polypeptides offers significant advantages including facile synthesis of acid-labile urethane derivative monomers that are stable, even in contact with moisture, and fast polymerization under easily achievable conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 280–286  相似文献   
4.
In this paper,the methodology of the directed relation graph with error propagation and sensitivity analysis(DRGEPSA),proposed by Niemeyer et al.(Combust Flame 157:1760-1770.2010).and its differences to the original directed relation graph method are described.Using DRGEPSA,the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds.The 25-species and 131-step mechanism and the 24-species and115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed.Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps,it is no longer able to represent the correct reaction processes.With the DRGEPSA method,a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and8157 steps is reduced to a much smaller mechanism with249 species and 910 steps while retaining good accuracy.If considering only high-temperature(higher than 1000 K)applications,the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or48 species and 220 steps.Furthermore,a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism.It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy.Thus,the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.  相似文献   
5.
The first total synthesis of glycocin F, a uniquely diglycosylated antimicrobial peptide bearing a rare S‐linked N‐acetylglucosamine (GlcNAc) moiety in addition to an O‐linked GlcNAc, has been accomplished using a native chemical ligation strategy. The synthetic and naturally occurring peptides were compared by HPLC, mass spectrometry, NMR and CD spectroscopy, and their stability towards chymotrypsin digestion and antimicrobial activity were measured. This is the first comprehensive structural and functional comparison of a naturally occurring glycocin with an active synthetic analogue.  相似文献   
6.
7.
8.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
9.
Transport in Porous Media - We investigate viscous fluid flows and concurrent fluid-driven deformations in porous media. The hydro-mechanically (H-M) coupled pore-network model (PNM) is developed,...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号