首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1390篇
  免费   51篇
  国内免费   21篇
化学   982篇
晶体学   9篇
力学   42篇
数学   242篇
物理学   187篇
  2022年   11篇
  2021年   25篇
  2020年   28篇
  2019年   26篇
  2018年   12篇
  2017年   15篇
  2016年   39篇
  2015年   25篇
  2014年   27篇
  2013年   62篇
  2012年   72篇
  2011年   94篇
  2010年   70篇
  2009年   43篇
  2008年   74篇
  2007年   96篇
  2006年   103篇
  2005年   100篇
  2004年   85篇
  2003年   64篇
  2002年   65篇
  2001年   25篇
  2000年   16篇
  1999年   14篇
  1998年   9篇
  1997年   15篇
  1996年   13篇
  1995年   5篇
  1994年   12篇
  1993年   16篇
  1992年   8篇
  1991年   13篇
  1990年   9篇
  1988年   12篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   12篇
  1981年   11篇
  1980年   6篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   9篇
  1975年   5篇
  1974年   9篇
  1973年   11篇
  1972年   5篇
排序方式: 共有1462条查询结果,搜索用时 31 毫秒
1.
Recognition of furanosides (five‐membered ring sugars) by proteins plays important roles in host–pathogen interactions. In comparison to their six‐membered ring counterparts (pyranosides), detailed studies of the molecular motifs involved in the recognition of furanosides by proteins are scarce. Here the first in‐depth molecular characterization of a furanoside–protein interaction system, between an antibody (CS‐35) and cell wall polysaccharides of mycobacteria, including the organism responsible for tuberculosis is reported. The approach was centered on the generation of the single chain variable fragment of CS‐35 and a rational library of its mutants. Investigating the interaction from various aspects revealed the structural motifs that govern the interaction, as well as the relative contribution of molecular forces involved in the recognition. The specificity of the recognition was shown to originate mainly from multiple CH–π interactions and, to a lesser degree, hydrogen bonds formed in critical distances and geometries.  相似文献   
2.
We have investigated the cannibalistic self-trapping reaction of an ortho-benzyne derivative generated from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne in an HDDA reaction. Without adding any specific trapping agent, the highly reactive benzyne is trapped by another bisdiyne molecule in at least three different modes. We have isolated and characterized the resulting products and performed high-level calculations concerning the reaction mechanism. During the cannibalistic self-trapping process, either a C≡C triple bond or an sp–sp3 C−C single bond is cleaved. Up to seven rings and nine C−C bonds are formed starting from two 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne molecules. Our experiments and calculations provide considerable insight into the variety of reaction pathways which the ortho-benzyne derivative, generated from a bisdiyne, can take when reacting with another bisdiyne molecule.  相似文献   
3.
Solid state 1H NMR line‐shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene‐based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic‐level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA‐cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1143–1156  相似文献   
4.
Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study – composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks – dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.  相似文献   
5.
6.
Ruthenium polypyridine‐type complexes are extensively used sensitizers to convert solar energy into chemical and/or electrical energy, and they can be tailored through their metal‐to‐ligand charge‐transfer (MLCT) properties. Much work has been directed at harnessing the triplet MLCT state in photoinduced processes, from sophisticated molecular architectures to dye‐sensitized solar cells. In dye‐sensitized solar cells, strong coupling to the semiconductor exploits the high reactivity of the (hot) singlet/triplet MLCT state. In this work, we explore the nature of the 1MLCT states of remotely substituted RuII model complexes by both experimental and theoretical techniques. Two model complexes with electron‐withdrawing (i.e. NO2) and electron‐donating (i.e. NH2) groups were synthesized; these complexes contained a phenylene spacer to serve as a spectroscopic handle and to confirm the contribution of the remote substituent to the 1MLCT transition. [Ru(tpy)2]2+‐based complexes (tpy=2,2′:6′,2′′‐terpyridine) were further desymmetrized by tert‐butyl groups to yield unidirectional 1MLCTs with large transition dipole moments, which are beneficial for related directional charge‐transfer processes. Detailed comparison of experimental spectra (deconvoluted UV/Vis and resonance Raman spectroscopy data) with theoretical calculations based on density functional theory (including vibronic broadening) revealed different properties of the optically active bright 1MLCT states already at the Franck–Condon point.  相似文献   
7.
8.
This paper studies the empirical laws of eigenvalues and singular values for random matrices drawn from the heat kernel measures on the unitary groups \({\mathbb {U}}_N\) and the general linear groups \({\mathbb {GL}}_N\), for \(N\in {\mathbb {N}}\). It establishes the strongest known convergence results for the empirical eigenvalues in the \({\mathbb {U}}_N\) case, and the first known almost sure convergence results for the eigenvalues and singular values in the \({\mathbb {GL}}_N\) case. The limit noncommutative distribution associated with the heat kernel measure on \({\mathbb {GL}}_N\) is identified as the projection of a flow on an infinite-dimensional polynomial space. These results are then strengthened from variance estimates to \(L^p\) estimates for even integers p.  相似文献   
9.
Two N-methylpyridinium compounds and analogous N-protonated salts of 2- and 2,7-substituted 4-pyridyl-pyrene compounds were synthesised and their crystal structures, photophysical properties both in solution and in the solid state, electrochemical and spectroelectrochemical properties were studied. Upon methylation or protonation, the emission maxima are significantly bathochromically shifted compared to the neutral compounds, although the absorption maxima remain almost unchanged. As a result, the cationic compounds show very large apparent Stokes shifts of up to 7200 cm−1. The N-methylpyridinium compounds have a single reduction at ca. −1.5 V vs. Fc/Fc+ in MeCN. While the reduction process was reversible for the 2,7-disubstituted compound, it was irreversible for the mono-substituted one. Experimental findings are complemented by DFT and TD-DFT calculations. Furthermore, the N-methylpyridinium compounds show strong interactions with calf thymus (ct)-DNA, presumably by intercalation, which paves the way for further applications of these multi-functional compounds as potential DNA-bioactive agents.  相似文献   
10.
A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m−2. These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号