首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  物理学   31篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
高功率激光装置中鬼像的模拟-应用实际光线追迹法   总被引:3,自引:0,他引:3  
高功率固体激光装置中正常光束的残余反射将形成能量较大的鬼点,它们极易对元器件造成损害,因此对一阶及多阶鬼点的位置作定量分析对高功率激光系统设计是非常必要的。采用将近轴分析与实际光线追迹相结合的分析方法,对神光Ⅲ原型装置进行了一套完整的杂散光分析。首先在近轴条件下对系统中可能产生的一阶至多阶鬼点进行了全面的计算和定位,列出其来源和鬼点较集中的区域,如普克尔盒一个窗口的前表面附近鬼点能量比较集中,然后通过大量的实际光线追迹对这些元件进行重点考察,模拟其表面的能量分布,为如何减小鬼点数目,从而避免鬼点能量造成的损伤提供了详尽的数据参考。  相似文献
2.
The blocks of phenolphthalein poly(ether sulfone) (PES-C) were prepared by hot pressing. Then the blocks were irradiated with electron beams under N2 atmosphere at room temperature. The structural and tribological responses of PES-C on electron irradiation were investigated. Results showed that partial degradation took place on the surface of PES-C after electron irradiation. Even so, the infrared spectra (FTIR) of PES-C after electron irradiation maintained much memory of the pristine sample, the reason for this might be due to the radiation-resistant property of PES-C and the less damage caused by the lower liner energy transfer of electron with respect to other ions. In addition, amorphous carbon and carbides formed on the surface of PES-C after electron irradiation. Friction and wear tests revealed that with increasing irradiation dose, it took more time for the friction coefficient to decrease from a higher value to a lower one and level off. And the wear rate decreased with the increase of irradiation dose. It was concluded that the variation of the tribological behavior of PES-C resulted from its structural responses on electron irradiation on the surface.  相似文献
3.
Achieving precise control over the synthesis and properties of porous nanostructured materials has been garnering considerable recent research attention. In the work presented here, nickel oxalate nanostructures with controllable shapes were synthesized through a simple and facile wet-chemistry route without any surfactant. An interesting shape evolution process from 2D nanoflakes to 1D nanorods has been illustrated on the basis of time-dependent experimental studies. Subsequent calcination at 380 °C yielded porous NiO nanostructures that retained the morphologies of their predecessors. The phase composition, morphology, and structure of the as-obtained products were studied by various tools. Electrochemical properties of the NiO electrodes were carried out using cyclic voltammetry and galvanostatic charge–discharge measurements by a three-electrode system. Electrochemical studies reveal that the as-prepared mesoporous NiO nanostructures have good specific capacitance and exhibit excellent capacity retention for more than 1,000 cycles due to its porous character and morphology. The results suggest that mesoporous NiO nanostructures are a promising supercapacitor electrode material.  相似文献
4.
A series of polyurethane (PU)/talc composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effect of the talc content on the mechanical, wettability and tribological properties of the PU composites was studied. Tensile strength of the PU composites reached to the maximum after adding 5% talc. The water contact angles (CA) of the original surfaces and worn surfaces of the polyurethane composites were measured. The experimental results indicated that the contact angles of the worn surface increased after friction. The friction and wear experiments were tested on a MRH-3 model ring-on-block test rig at different sliding speeds and loads under dry sliding and water lubrication. Experimental results revealed that the talc contributed to largely improve the tribological properties of the PU composites. The coefficient of friction (COF) of the composites increased with increasing talc. Scanning electron microscopic (SEM) investigations showed that the worn surfaces of the talc filled PU composites were smoother than pure polyurethane under given load and sliding speed.  相似文献
5.
Porous SnO2 nanoflakes with loose-packed structure were synthesized by calcination of SnS2 precursors that were obtained through solvothermal method at low temperature. The as-obtained SnO2 product had a three-dimensional porous structure with relatively high specific surface area. It was found that the SnO2 nanoflakes inherited the morphology of precursor while numerous pores were formed after the annealing process. The combined techniques of X-ray diffraction, energy-dispersive spectrum, field emission scanning electron microscopy, and (high-resolution) transmission electron microscopy were used for characterization of the as-prepared SnO2 product. Moreover, the porous SnO2 nanoflakes with loose-packed structure could be used as gas sensors for detecting ethanol and acted as anode for lithium ion batteries. Our study shows that the as-prepared SnO2 nanoflakes not only exhibit good response and reversibility to ethanol gas but also display enhanced Li-ion storage capability.  相似文献
6.
A series of superhydrophobic polytetrafluoroethylene (PTFE) surfaces were prepared by a facile cold pressing and sintering method, and their microstructures and wetting behaviors could be artificially tailored by altering sintering temperature and using different masks. Specifically, the microstructures mainly depended on the sintering temperature, whereas the wetting behaviors, water contact angle (WCA) and sliding angle (SA), greatly hinged on both the sintering temperature and mask. Then a preferable superhydrophobic surface with WCA of 162 ± 2° and SA of 7° could be obtained when the sintering temperature was 360 °C and the 1000 grit abrasive paper was used as a mask. In addition, it was worth noting that the as-prepared surfaces exhibited excellent stability under UV illumination, which was the most key factor for them toward practical applications.  相似文献
7.
The present work reports a simple method to produce the aluminum superhydrophobic surface based on an interface reaction between an aluminum foil and zinc aqueous solution. The products were characterized by field-emission scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectrum. The field-emission scanning electron microscopy images show that the coating surface is composed of micro/nanoscale binary structure, which is similar to the structure of lotus leaf. The wettability of the coating surface was also investigated. It was found that after treatment with stearic acid, the wettability of the aluminum foil changed from superhydrophilic to water-repellent superhydrophobic. The complex micro/nanoscale binary structures along with the low surface energy lead to the high surface superhydrophobicity.  相似文献
8.
A simple route for fabricating highly ordered luminescent thin films based on hybrid material of diblock copolymer and europium complex, assisted with self-organization of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer upon solvent annealing, is presented. PS-b-PEO self-organized into hexagonal patterns and europium complex of Eu(BA)3Phen was selectively embedded in PS blocks after solvent annealing in benzene or benzene/water vapor. During benzene annealing, the orientation of the PEO cylindrical domains strongly depended on the Eu(BA)3Phen concentration. In contrast, when the hybrid thin films were annealed in mixture of benzene and water vapor, high degree of orientation of the PEO cylindrical domains is more easily obtained, which is independent of Eu(BA)3Phen concentration. Furthermore, preferential interaction of PEO domains with water induces a generation of nanopores in the hybrid thin film. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the long-range lateral order and phase composition of the hybrid thin films. The ordered nanohybrid thin films kept the fluorescence property of Eu(BA)3Phen and showed a strong red emission under the 254 nm light's irradiation. The fluorescence property was confirmed by photoluminescence (PL) spectra.  相似文献
9.
A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO2 nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO2 content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.  相似文献
10.
This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号