首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   40篇
力学   1篇
数学   2篇
物理学   6篇
  2018年   2篇
  2013年   5篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1994年   2篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有49条查询结果,搜索用时 125 毫秒
1.
2.
The self‐assembly of poly(ethylidene acetate) (st‐PEA) into van der Waals‐stabilized liquid‐crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp3‐carbon backbone polymers. Although the dense packing of polar ester functionalities along the carbon backbone of st‐PEA could perhaps be expected to lead directly to rigid‐rod behavior, molecular modeling reveals that individual st‐PEA chains are actually highly flexible and should not reveal rigid‐rod induced LC behavior. Nonetheless, st‐PEA clearly reveals LC behavior, both in solution and in the melt over a broad elevated temperature range. A combined set of experimental measurements, supported by MM/MD studies, suggests that the observed LC behavior is due to self‐aggregation of st‐PEA into higher‐order aggregates. According to MM/MD modeling st‐PEA single helices adopt a flexible helical structure with a preferred transgauche synsynantianti orientation. Unexpectedly, similar modeling experiments suggest that three of these helices can self‐assemble into triple‐helical aggregates. Higher‐order assemblies were not observed in the MM/MD simulations, suggesting that the triple helix is the most stable aggregate configuration. DLS data confirmed the aggregation of st‐PEA into higher‐order structures, and suggest the formation of rod‐like particles. The dimensions derived from these light‐scattering experiments correspond with st‐PEA triple‐helix formation. Langmuir–Blodgett surface pressure–area isotherms also point to the formation of rod‐like st‐PEA aggregates with similar dimensions as st‐PEA triple helixes. Upon increasing the st‐PEA concentration, the viscosity of the polymer solution increases strongly, and at concentrations above 20 wt % st‐PEA forms an organogel. STM on this gel reveals the formation of helical aggregates on the graphite surface–solution interface with shapes and dimensions matching st‐PEA triple helices, in good agreement with the structures proposed by molecular modeling. X‐ray diffraction, WAXS, SAXS and solid state NMR spectroscopy studies suggest that st‐PEA triple helices are also present in the solid state, up to temperatures well above the melting point of st‐PEA. Formation of higher‐order aggregates explains the observed LC behavior of st‐PEA, emphasizing the importance of the “tertiary structure” of synthetic polymers on their material properties.  相似文献   
3.
In the context of non-abelian gerbes, we define a cubical version of categorical group 2-bundles with connection over a smooth manifold. We address their two-dimensional parallel transport, study its properties, and construct non-abelian Wilson surface functionals.  相似文献   
4.
A Commentary on the paper ”A molecular dynamics study of the nematic phase of 4‐n‐pentyl‐4′‐cyanobiphenyl?, by S. J. Picken, W. F. van Gunsteren, P. Th. van Duijnen and W. H. de Jeu. First published in Liquid Crystals, 6, 357‐371 (1989).  相似文献   
5.
6.
The results of a calorimetric study on the melting and crystallization behavior of concentrated sulfuric acid containing dispersed single wall carbon nanotubes (SWCNT), dissolved water, and dissolved poly‐p‐phenyleneterphthalate (PPTA) polymer are presented. The measured reduction of the heat of crystallization is caused by the build‐up of an associated layer of structured acid molecules around SWCNT and PPTA. The freezing point depression is related to the number of dissolved species such as ions. It is shown that this theory accurately describes the experimental data for dissolved water and sulfur trioxide, but not for large molecules such as SWCNT. A mechanism for the interaction between sulfuric acid and SWCNT is proposed, based on preferred adsorption of sulfur trioxide and dissociation of sulfuric acid, leading to an increased number of dissolved low‐molecular‐weight species. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1914–1922, 2008  相似文献   
7.
Two unusual experimental phenomena that were found for polymer melts or solutions containing the dispersed phases of Na-montmorillonite or detonation synthesis nanodiamond have been studied. These phenomena consist in the reduction of viscosity upon addition of specified amount of particles and in the formation of regular morphology by these particles in strong flows looking as a system of concentric rings. In other words, under certain conditions, there is transition to stratified shear stream and the viscosity of such a regular heterogeneous system canbe lower than that for the polymer matrix itself. Hence, both phenomena are mutually related; and the main problem here is the analysis of driving forces leading to the regular texture formation taking place in intense flows for unfilled viscoelastic polymers as well. As a preliminary explanation, the conception of the special kind of the elastic instability is discussed. This instability appears either in the regular helix-like structure formation or in the irregular elastic turbulence. The particles of the filler play a role of tracers that revealed the relief of texture.  相似文献   
8.
A Commentary on the paper “Homologous series of liquid-crystalline metal free and copper octa-n-alkoxyphthalocyanines„, by J. F. van der Pol, E. Neeleman, J. W. Zwikker, R. J. M. Nolte, W. Drenth, J. Aerts, R. Visser and S. J. Picken. First published in Liquid Crystals, 6, 577-592 (1989).  相似文献   
9.
Aggregation behavior and thermodynamic properties of two novel homologous aromatic moiety bearing hybrid fluorocarbon surfactants, sodium 2-(2-(4-ethylphenyl)-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate (1) and sodium 2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)-1,1,2,2-tetrafluoroethanesulfonate (2) were studied using surface tension measurements and isothermal titration calorimetry (ITC) in dilute aqueous solutions at room temperature. Because of the aromatic group in the hydrophobic tail, both surfactants are soluble at room temperature unlike their starting precursor, 5-iodooctafluoro-3-oxapentanesulfonate as well as several other fluorocarbon sulfonic acid salts. Moreover, the surfactant 2 has the ability that it can be polymerized once microemulsions are formed with it. The ionic conductivity measurements of 1 at five different temperatures from 288 to 313 K were carried out to study the effect of temperature on the micellization and its thermodynamics. The pseudophase separation model was applied to estimate thermodynamic quantities from conductivity data. The Gibbs energy of micellization versus temperature exhibited the characteristic U-shaped behavior with a minimum at 306 K. The micellization process was found to be largely entropy driven. Because of its hybrid structure, the entropy change of micellization for 1 was larger than what is common for hydrocarbon surfactants like SDS but less than for fully fluorinated surfactants like NaPFO. The micellization process was found to be following the entropy-enthalpy compensation phenomena.  相似文献   
10.
Polyelectrolyte materials are an interesting class of electrolytes for use in fuel cell and battery applications. Poly(para-phenylene terephthalamide) (PPTA, Kevlar) is a liquid crystalline polymer that, when sulfonated, is a polyelectrolyte that exhibits moderate ion conductivity at elevated temperatures. In this work, quasi-elastic neutron scattering (QENS) experiments were performed to gain insight into the effect of the presence of lithium counterions on the chain dynamics in the material. It was found that the addition of lithium ions decreases the dynamics of the chains. Additionally, the binding of lithium ions to the sulfonic acids groups was investigated by density functional theory (DFT) calculations. It was found that the local surroundings of the sulfonic acid group have very little effect on the lithium-ion binding energy. Binding energies for a variety of different systems were all calculated to be around 150 kcal/mol. The DFT calculations also show the existence of a structure in which a single lithium ion interacts with two sulfonic acid moieties on different chains. The formation of such "electrostatic cross-links" is believed to be the source of the increased tendency to aggregate and the reduced dynamics in the presence of lithium ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号