首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   3篇
  国内免费   2篇
化学   84篇
晶体学   2篇
力学   2篇
数学   43篇
物理学   25篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   12篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   7篇
  2009年   15篇
  2008年   8篇
  2007年   2篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   3篇
  1908年   1篇
排序方式: 共有156条查询结果,搜索用时 78 毫秒
1.

The course of the thermogravimetric degradation of LDPE in the presence of different aluminosilicate catalysts was modelled by applying a differential isoconversional Friedman approach. An analysis of catalyst-free PE-TG profiles confirmed that the degradation profiles predicted by various reaction models overlap over the entire conversion range once the data are analysed using a differential isoconversional Friedman approach. The results demonstrate that the catalytic degradation of LDPE can be predicted by a correlation twin, i.e. the two specific functional relations between the activation energy, pre-exponential factor and conversion. The crucial step for ensuring good agreement between the predicted and the measured profiles is to extrapolate the discrete values of the activation energies and pre-exponential factors to the zero conversion. It turns out that linear extrapolation and interpolation from the discrete values outperforms regression functions based on various order polynomials, and that apparent deviations from the global trend at lower conversions are not a consequence of the misinterpretation of the experimental results but are an experimental fact. The assumption about the compensation effect between the pre-exponential factor and activation energy holds within the conversion range from 10 to 90%. However, it is generally unsuitable for modelling purposes due to the uncertain extrapolation of the kinetic parameters to the zero conversion.

  相似文献   
2.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   
3.
Optical sensors for application in innovative wearable sensing systems such as textile-integrated systems and wireless sensor platforms rely on the development of low-cost multifunctional materials compatible with standard fabrication technologies. We are developing optically responsive pH sensitive sol–gel coatings for integration with a mobile wireless smart tag sensing system. For this application, we have fabricated a range of thin pH sensitive films using bromocresol green (BCG) indicator immobilised in inorganic–organic silica hybrid matrices prepared by a sol–gel method and deposited by spin-coating onto glass substrates. The surface hydrophilicity of the films were varied by using the inorganic sol–gel precursor tetraethoxysilane together with either methyltriethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane or glycidoxypropyltrimethoxysilane as organically modified sol–gel precursors, co-polymerised in different ratios. Spectral characterisation of the films was performed using visible absorption spectroscopy. The shift in absorption maxima and other spectral changes of the different matrices have been identified, and the apparent pK app values of the immobilised BCG pH indicator determined. The surface wettability properties of the films have been studied by measuring the contact angle of water, formamide and diiodomethane which has allowed the estimation of the surface free energy (SFE) using three different models: Owens–Wendt, Wu and van Oss-Chaudhury-Good. It is shown that the SFE of the hybrid films is directly related to the type and the degree of organic modification, which in turn has a significant effect on the pH response-time of these sensing films.  相似文献   
4.
5.
Rončević  Igor  Bibulić  Petar  Vančik  Hrvoj  Biljan  Ivana 《Structural chemistry》2018,29(5):1489-1497

Solution-state nitroso monomer-azodioxide equilibria and conformational freedom of several aromatic dinitroso derivatives, differing in the spacer group between the aromatic rings, were studied by one- and two-dimensional variable temperature 1H NMR spectroscopy and by quantum chemical calculations. The proton signals of nitroso monomer-azodioxide mixtures revealed by low-temperature NMR were assigned and validated using B3LYP-D3/6-311+G(2d,p)/SMD level of theory. In almost all cases, a preference towards the formation of only one azodioxy isomer of aromatic dinitroso compounds was found, which was assigned to Z-dimer according to computational data. Nevertheless, the computed small energy difference between the Z- and E-isomer could not account for the extreme preference for Z-dimer formation, indicating an influence of entropic or solvent effects. The formation of shorter oligomers in solution was excluded based on integrated 1H NMR signal intensities. The experimental results indicated an average dimerization Gibbs energy of about ??5 kJ/mol at 223 K and were found to be in very good correlation with dimerization energies obtained by solution-phase optimization.

  相似文献   
6.
7.
8.
The purpose of the present work is the sol–gel synthesis, structure characterization and potential application of hybrid biomaterials based on silica precursor (MTES) and natural polymers such as gelatin or pectin. The structure formation in the biomaterials was investigated by XRD, FTIR, BET and AFM. The results showed that all studied hybrid biomaterials have an amorphous structure. The FT-IR spectra of the obtained materials with MTES showed chemical bonds at 2,975, 1,255, 880 and 690 cm−1 due to the presence of Si–O–R (CH3 and C2H5) and Si–C bonds. In the samples synthesized with TEOS the inorganic and organic components interact by hydrogen bonding, Van der Waals or electrostatic forces. Surface area of investigated samples decreases with increasing of the natural polymers content. The structure evolution was studied by AFM and roughness analysis. Depending on the chemical composition a different design and size of particles and their aggregates on the surface structure were established. The hybrid biomaterials were used for immobilization of bacterial cells and applied in the biodegradation of the toxic compound 4-chlorobutyronitrile, possible constituent of waste water effluents in a laboratory glass bioreactor. Optimization of the process at different temperatures was carried out.  相似文献   
9.
Maxwell–Bloch equations are widely used to model the dynamics due to coherent light-matter interaction in quantum cascade laser (QCL) structures, which plays an essential role especially for the generation of frequency combs and mode-locked pulses. While the modest numerical complexity of the Maxwell–Bloch system allows for a full spatiotemporal treatment, its main disadvantage is the inclusion of dissipation by empirical dephasing rates and electron lifetimes. We present a self-consistent multi-domain approach which couples the Maxwell–Bloch equations to advanced carrier transport simulations based on a density matrix Monte Carlo technique, yielding the scattering and dephasing rates. In this way, the compact spatiotemporal modeling of the carrier-light dynamics by the Maxwell–Bloch system can be combined with the versatility and reliability of self-consistent carrier transport approaches. Simulation results are shown for a QCL-based terahertz frequency comb source, and good agreement with experiment is obtained.  相似文献   
10.
Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml−1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml−1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号