首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   32篇
  国内免费   3篇
化学   803篇
晶体学   10篇
力学   23篇
数学   51篇
物理学   228篇
  2023年   6篇
  2021年   9篇
  2020年   14篇
  2019年   15篇
  2018年   14篇
  2017年   2篇
  2016年   25篇
  2015年   15篇
  2014年   21篇
  2013年   49篇
  2012年   44篇
  2011年   69篇
  2010年   38篇
  2009年   39篇
  2008年   61篇
  2007年   79篇
  2006年   91篇
  2005年   75篇
  2004年   73篇
  2003年   64篇
  2002年   62篇
  2001年   13篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   16篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   10篇
  1987年   2篇
  1986年   8篇
  1985年   14篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   12篇
  1980年   11篇
  1979年   13篇
  1978年   7篇
  1977年   4篇
  1975年   6篇
  1974年   12篇
  1973年   5篇
  1970年   4篇
排序方式: 共有1115条查询结果,搜索用时 46 毫秒
1.
Despite the long history of polyaniline chemistry, backbone‐substituted polyanilines are limited. Here, we report the synthesis of pentiptycene‐incorporated polyanilines through acidic aniline oxidative polymerization with three pentiptycene derivatives, TA, DA, and TP, as nucleate additives. The reactivity of TA > DA ? TP, as evidenced by structural and property analysis of the corresponding polyaniline products, demonstrates a radical coupling mechanism and the formation of Dewar π‐complex intermediates for the chain propagation. In addition, the iptycene substituent effect on enhancing the electrochemical stability and charge storage capability of polyaniline are discussed with a clip model, namely, the threading of neighboring polyaniline chains through the U‐ and V‐shaped cavities of pentiptycene restricts lateral motions of the polymer chains and promotes interchain conductivity. Density function theory (DFT) calculations suggest a larger clipping effect for the U versus V cavities. Both the conclusion of a terminal planar p‐phenylenediamine (ppda) group being the key component of an effective nucleate and the concept of interchain clipping for enhanced electrochemical performance should facilitate the design and synthesis of novel polyanilines for electronic applications.  相似文献   
2.
The hydrogen transfer reaction in the reaction of HOSO + NO2 with and without H2O have been investigated using multicomponent quantum-mechanics method, which can directly take nuclear quantum effect (NQE) of light nuclei into account. For the case of the reaction without H2O, our calculation reveals that the reaction leading to trans-HONO is preferred. For the reaction with H2O, water-non-mediated and water-mediated (hydrogen-relay) hydrogen transfer mechanism are investigated. The NQE of hydrogen nucleus lowers the relative energy of the stationary point structures and reduces the activation barrier of the reactions. The largest stabilization is found in the transition state structure of the hydrogen-relay type reaction. H/D isotope effects for the reactions are also analyzed. In particular, H/D isotope effect on the activation barrier is analyzed in detail with the aid of the active strain model.  相似文献   
3.
4.
Molecular self‐assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo‐excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of the chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC). While a TTA‐UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co‐assemblies exhibit a clear upconverted emission in air‐saturated water even under extremely low chromophore concentrations down to 40 μm . The generalization of this nano‐encapsulation approach offers new functions and applications using oxygen‐sensitive species for supramolecular chemistry.  相似文献   
5.
Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB‐WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional 1H NMR and BB‐WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
The alkylative carboxylation of allenamide catalyzed by an N‐heterocyclic carbene (NHC)–copper(I) complex [(IPr)CuCl] with CO2 and dialkylzinc reagents was investigated. The reaction of allenamides with dialkylzinc reagents (1.5 equiv) and CO2 (1 atm.) proceeded smoothly in the presence of a catalytic quantity of [(IPr)CuCl] to afford (Z)‐α,β‐dehydro‐β‐amino acid esters in good yields. The reaction is regioselective, with the alkyl group introduced onto the less hindered γ‐carbon, and the carboxyl group introduced onto the β‐carbon atom of the allenamides. The first step of the reaction was alkylative zincation of the allenamides to give an alkenylzinc intermediate followed by nucleophilic addition to CO2. A variety of cyclic and acyclic allenamides were found to be applicable to this transformation. Dialkylzinc reagents bearing β‐hydrogen atoms, such as Et2Zn or Bu2Zn, also gave the corresponding alkylative carboxylation products without β‐hydride elimination. The present methodology provides an easy route to alkyl‐substituted α,β‐dehydro‐β‐amino acid ester derivatives under mild reaction conditions with high regio‐ and stereoselectivtiy.  相似文献   
7.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
8.
The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII(opda)3]2+ (hs- [6R] 2+), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII(bqdi)3]2+ (bqdi: o-benzoquinodiimine) (ls- [0R] 2+) formation by O2 oxidation of hs- [6R] 2+, accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls- [0R] [PF6]2 can be reduced by hydrazine giving ls-[FeII(opda)(bqdi)2][PF6]2 (ls- [2R] [PF6]2) and ls-[FeII(opda)2(bqdi)][PF6]2 (ls- [4R] [PF6]2) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.  相似文献   
9.
Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a β-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the β-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.  相似文献   
10.
In this personal account, our recent developments on the asymmetric synthesis of a quaternary carbon stereogenic center by organocatalysis using a primary amino acid and its salt as a catalyst are described in three chapters: (1) conjugate addition to nitroalkenes and vinyl ketones, (2) nucleophilic addition to π-allyl palladium complexes, and (3) nucleophilic substitution reactions with allyl and propargyl halides. By these methods, asymmetric α-allylation of α-branched aldehydes and ketones smoothly proceeded to give γ-nitroaldehydes, ketoaldehydes, α-allylated aldehydes, and α-allylated β-ketoesters possessing a quaternary carbon stereogenic center in good yields with high enantioselectivities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号