首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   60篇
  国内免费   19篇
化学   1390篇
晶体学   20篇
力学   84篇
数学   440篇
物理学   414篇
  2021年   24篇
  2020年   27篇
  2019年   34篇
  2018年   24篇
  2017年   16篇
  2016年   40篇
  2015年   49篇
  2014年   33篇
  2013年   100篇
  2012年   79篇
  2011年   99篇
  2010年   58篇
  2009年   37篇
  2008年   70篇
  2007年   88篇
  2006年   102篇
  2005年   120篇
  2004年   90篇
  2003年   93篇
  2002年   70篇
  2001年   48篇
  2000年   41篇
  1999年   20篇
  1998年   14篇
  1997年   32篇
  1996年   33篇
  1995年   33篇
  1994年   32篇
  1993年   33篇
  1992年   39篇
  1991年   35篇
  1990年   26篇
  1989年   30篇
  1988年   28篇
  1987年   19篇
  1986年   22篇
  1985年   41篇
  1984年   35篇
  1983年   36篇
  1982年   35篇
  1981年   32篇
  1980年   35篇
  1979年   26篇
  1978年   37篇
  1977年   27篇
  1976年   34篇
  1975年   29篇
  1974年   40篇
  1973年   39篇
  1972年   16篇
排序方式: 共有2348条查询结果,搜索用时 22 毫秒
1.
Mono-N-protected amino acids (MPAAs) are increasingly common ligands in Pd-catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand-accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand-to-metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100-fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C−H activation at multiple PdII centers.  相似文献   
2.
3.
4.
We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4ZnLi2) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing β-nitroacrylates and β-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N’,N’-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N’,N’-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4ZnLi2 into equimolar amounts of solvent-separated Et3ZnLi and EtLi.  相似文献   
5.
Transport in Porous Media - We develop an analytical model describing the flow of NaCl– $$\hbox {H}_2\hbox {O}$$ in a saturated porous medium adjacent to a hot vertical wall and apply the...  相似文献   
6.
7.
Cellulose nanocrystals (CNCs) spontaneously assemble into gels when mixed with a polyionic organic or inorganic salt. Here, we have used this ion-induced gelation strategy to create functional CNC gels with a rigid tetracationic macrocycle, cyclobis(paraquat-p-phenylene) ( CBPQT 4+). Addition of [ CBPQT ]Cl4 to CNCs causes gelation and embeds an active host inside the material. The fabricated CNC gels can reversibly absorb guest molecules from solution then undergo molecular recognition processes that create colorful host–guest complexes. These materials have been implemented in gel chromatography (for guest exchange and separation), and as elements to encode 2- and 3-dimensional patterns. We anticipate that this concept might be extended to design a set of responsive and selective gel-like materials functioning as, for instance, water-pollutant scavengers, substrates for chiral separations, or molecular flasks.  相似文献   
8.
Lewis  R.  Corcoran  P. 《Journal of Heuristics》2022,28(3):259-285
Journal of Heuristics - This paper proposes two heuristic algorithms for finding fixed-length circuits and cycles in undirected edge-weighted graphs. It focusses particularly on a largely...  相似文献   
9.
10.
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV‐induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine–thymine double‐stranded structures (AT)n. Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time‐dependent (TD)‐DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine‐to‐thymine charge‐transfer states. Emission from such high‐energy long‐lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π–π* states (≥0.1). An increase in the size of the system quenches π–π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π–π* and charge‐transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n: high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π–π* states, giving rise to delayed fluorescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号