首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
  国内免费   1篇
化学   14篇
数学   2篇
物理学   88篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1977年   2篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1963年   1篇
  1935年   2篇
排序方式: 共有104条查询结果,搜索用时 350 毫秒
1.
The formation of slip bands is the main mechanism of cyclic deformation in pure Al. Their density, orientation and heights in polycrystalline Al were investigated during cycling. Types, sizes and densities of precipitates are responsible for the mode of cyclic deformation in AlCu4 pure alloy. In technical Al alloys intermetallic phases have detrimental effects on deformation homogeneity and largely govern the fatigue mechanism of the material and especially microcrack initiation.  相似文献   
2.
过去,作者曾发表了多种光敏引发体系引发烯类单体光聚合的工作,在研究2,2-二甲氧基苯乙酮在氧存在下引发甲基丙烯酸甲酯光聚合时,结合在聚合物链端的引发剂碎片具有光化学活性,在光聚合反应中产生高分子自由基,发生再次聚合,出现高分子量  相似文献   
3.
Bone ablation using different pulse parameters and four emission lines of 9.3, 9.6, 10.3, and 10.6 m of the CO2 laser exhibits effects which are caused by the thermal properties and the absorption spectrum of bone material. The ablation mechanism was investigated with light- and electron-microscopy at short laser-pulse durations of 0.9 and 1.8 s and a long pulse of 250 s. It is shown that different processes are responsible for the ablation mechanism either using the short or the long pulse durations. In the case of short pulse durations it is shown that, although the mineral components are the main absorber for CO2 radiation, water is the driving force for the ablation process. The destruction of material is based on explosive evaporation of water with an ablation energy of 1.3 kJ/cm3. Histological examination revealed a minimal zone of 10–15 m of thermally altered material at the bottom of the laser drilled hole. Within the investigated spectral range we found that the ablation threshold at 9.3 and 9.6 m is lower than at 10.3 and 10.6 m. In comparison the ablation with a long pulse duration is determined by two processes. On the one side, the heat lost by heat conduction leads to carbonization of a surface layer, and the absorption of the CO2 radiation in this carbonized layer is the driving force of the ablation process. On the other side, it is shown that up to 60% of the pulse energy is absorbed in the ablation plume. Therefore, a long pulse duration results in an eight-times higher specific ablation energy of 10 kJ/cm3.  相似文献   
4.
5.
6.
Progressive damage of aluminium mirrors subjected to microsecond pulsed TEA-CO2 laser irradiation in air, at incident intensity levels lower than the thresholds for melting induction and air breakdown ignition, was evidenced by electron microscopy investigations. A simple model was developed accounting for the results of our experimental studies.  相似文献   
7.
Single nanoemitters of electrons – hill-shaped carbon nano-objects – were fabricated with various sizes and configurations on thin diamond-like films by means of a local chemical vapor deposition (CVD) technique in a scanning tunneling microscope (STM) lithograph. A definite correlation between the nano-object height and surface electron potential has been established with the STM. It was found that, below a critical object thickness of about 15 nm, the surface electron potential was substantially lowered for smaller nano-objects (twice the decrease in the information signal for the 3-nm-thick features). The data obtained is considered to be strong evidence of low-dimensional effects in the process of low-threshold field electron emission observed earlier for nanostructured carbon materials. PACS 81.07.-b; 79.70.+q; 68.37.Ef  相似文献   
8.
A mechanism for photographitization of a free diamond surface is proposed. The quantum-kinetic rate of this process is determined. The graphitization rate is close to zero if the activation energy of the graphitization process is taken as being equal to the binding energy of a carbon atom with the surface (i.e. equal to the sublimation energy of a carbon atom). On the contrary, if the activation energy is close to the energy of C–C bonds, the graphitization process may occur at a noticeable rate and be observed under ‘relatively smooth’ experimental conditions. The temperature rise leads to a considerable increase in the graphitization rates. Preliminary experimental data on the low-rate laser ablation of diamond are presented to support the proposed model of photographitization. An early stage of laser-induced graphitization in the bulk of diamond is also considered. It is found that the nucleation of a ‘tiny graphite drop’ is possible in the bulk of the diamond inside the focal area of a laser beam; the ‘graphite drop’ growth causing the appearance of mechanical stresses in the surrounding regions. The maximum size of the graphite drop is determined, which, when exceeded, leads to mechanical damage of the sample and to a change in the mechanism of laser graphitization. An evident mechanical criterion for laser-induced damage of diamond is proposed. Received: 2 October 2002 / Accepted: 5 October 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. E-mail: stvn@stankin.ru  相似文献   
9.
We measured the temperature dependence of thermal conductivity of a polycrystalline CVD diamond with natural isotope composition and an isotope enriched (99.96% 12C) sample at temperatures from 5 to 420 K. The isotope enriched diamond demonstrates a considerable growth of thermal conductivity at temperatures above 80 K compared to the diamond with natural composition of isotopes. At room temperature the thermal conductivity reaches 24.3 W·cm?1K?1, and the isotope effect makes up not less than 34%.  相似文献   
10.
The activation of color centers in the bismuth aluminum-boron-phosphate glass by high-intensity femtosecond laser radiation is experimentally studied. The dynamics of the laser-induced emitting centers in the bulk of sample is characterized. The photoactivation of bismuth glasses is possibly related to the recharging of structural precursors, which serve as effective electron traps and whose possible configuration is discusses. The effect of the femtosecond irradiation involves the initiation of the nonlinear ionization of the glass matrix and the generation of plasma with the concentration of carriers that is sufficiently high to provide almost complete recharging of precursors over several laser pulses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号